Chainer Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

Overview

fcn - Fully Convolutional Networks

PyPI Version Python Versions GitHub Actions

Chainer implementation of Fully Convolutional Networks.

Installation

pip install fcn

Inference

Inference is done as below:

# forwaring of the networks
img_file=https://farm2.staticflickr.com/1522/26471792680_a485afb024_z_d.jpg
fcn_infer.py --img-files $img_file --gpu -1 -o /tmp  # cpu mode
fcn_infer.py --img-files $img_file --gpu 0 -o /tmp   # gpu mode

Original Image: https://www.flickr.com/photos/faceme/26471792680/

Training

cd examples/voc
./download_datasets.py
./download_models.py

./train_fcn32s.py --gpu 0
# ./train_fcn16s.py --gpu 0
# ./train_fcn8s.py --gpu 0
# ./train_fcn8s_atonce.py --gpu 0

The accuracy of original implementation is computed with (evaluate.py) after converting the caffe model to chainer one using convert_caffe_to_chainermodel.py.
You can download vgg16 model from here: vgg16_from_caffe.npz.

FCN32s

Implementation Accuracy Accuracy Class Mean IU FWAVACC Model File
Original 90.4810 76.4824 63.6261 83.4580 fcn32s_from_caffe.npz
Ours (using vgg16_from_caffe.npz) 90.5668 76.8740 63.8180 83.5067 -

FCN16s

Implementation Accuracy Accuracy Class Mean IU FWAVACC Model File
Original 90.9971 78.0710 65.0050 84.2614 fcn16s_from_caffe.npz
Ours (using fcn32s_from_caffe.npz) 90.9671 78.0617 65.0911 84.2604 -
Ours (using fcn32s_voc_iter00092000.npz) 91.1009 77.2522 65.3628 84.3675 -

FCN8s

Implementation Accuracy Accuracy Class Mean IU FWAVACC Model File
Original 91.2212 77.6146 65.5126 84.5445 fcn8s_from_caffe.npz
Ours (using fcn16s_from_caffe.npz) 91.2513 77.1490 65.4789 84.5460 -
Ours (using fcn16s_voc_iter00100000.npz) 91.2608 78.1484 65.8444 84.6447 -

FCN8sAtOnce

Implementation Accuracy Accuracy Class Mean IU FWAVACC Model File
Original 91.1288 78.4979 65.3998 84.4326 fcn8s-atonce_from_caffe.npz
Ours (using vgg16_from_caffe.npz) 91.0883 77.3528 65.3433 84.4276 -

Left to right, FCN32s, FCN16s and FCN8s, which are fully trained using this repo. See above tables to see the accuracy.

License

See LICENSE.

Cite This Project

If you use this project in your research or wish to refer to the baseline results published in the README, please use the following BibTeX entry.

@misc{chainer-fcn2016,
  author =       {Ketaro Wada},
  title =        {{fcn: Chainer Implementation of Fully Convolutional Networks}},
  howpublished = {\url{https://github.com/wkentaro/fcn}},
  year =         {2016}
}
Owner
Kentaro Wada
I'm a final-year PhD student at Imperial College London working on computer vision and robotics.
Kentaro Wada
Dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

CaFM-pytorch ICCV ACCEPT Introduction of dataset VSD4K Our dataset VSD4K includes 6 popular categories: game, sport, dance, vlog, interview and city.

96 Jul 05, 2022
Ray tracing of a Schwarzschild black hole written entirely in TensorFlow.

TensorGeodesic Ray tracing of a Schwarzschild black hole written entirely in TensorFlow. Dependencies: Python 3 TensorFlow 2.x numpy matplotlib About

5 Jan 15, 2022
Solving Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge

Zero-Shot Learning in Named Entity Recognition with Common Sense Knowledge Associated code for the paper Zero-Shot Learning in Named Entity Recognitio

Søren Hougaard Mulvad 13 Dec 25, 2022
Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps[AAAI2021]

Simple is not Easy: A Simple Strong Baseline for TextVQA and TextCaps Here is the code for ssbassline model. We also provide OCR results/features/mode

ZephyrZhuQi 51 Nov 18, 2022
Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021, Pytorch)

S2VD Semi-supervised Video Deraining with Dynamical Rain Generator (CVPR, 2021) Requirements and Dependencies Ubuntu 16.04, cuda 10.0 Python 3.6.10, P

Zongsheng Yue 53 Nov 23, 2022
[CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision

TorchSemiSeg [CVPR 2021] Semi-Supervised Semantic Segmentation with Cross Pseudo Supervision by Xiaokang Chen1, Yuhui Yuan2, Gang Zeng1, Jingdong Wang

Chen XiaoKang 387 Jan 08, 2023
Python tools for 3D face: 3DMM, Mesh processing(transform, camera, light, render), 3D face representations.

face3d: Python tools for processing 3D face Introduction This project implements some basic functions related to 3D faces. You can use this to process

Yao Feng 2.3k Dec 30, 2022
Multi Agent Path Finding Algorithms

MATP-solver Simulator collision check path step random initial states or given states Traditional method Seperate A* algorithem Confict-based Search S

30 Dec 12, 2022
Discord bot for notifying on github events

Git-Observer Discord bot for notifying on github events ⚠️ This bot is meant to write messages to only one channel (implementing this for multiple pro

ilu_vatar_ 0 Apr 19, 2022
Implementation of Kaneko et al.'s MaskCycleGAN-VC model for non-parallel voice conversion.

MaskCycleGAN-VC Unofficial PyTorch implementation of Kaneko et al.'s MaskCycleGAN-VC (2021) for non-parallel voice conversion. MaskCycleGAN-VC is the

86 Dec 25, 2022
Read and write layered TIFF ImageSourceData and ImageResources tags

Read and write layered TIFF ImageSourceData and ImageResources tags Psdtags is a Python library to read and write the Adobe Photoshop(r) specific Imag

Christoph Gohlke 4 Feb 05, 2022
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
LabelImg is a graphical image annotation tool.

LabelImgPlus LabelImg is a graphical image annotation tool. This project is not updated with new functions now. More functions are supported with Labe

lzx1413 200 Dec 20, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
PyTorch Implementation of Unsupervised Depth Completion with Calibrated Backprojection Layers (ORAL, ICCV 2021)

Unsupervised Depth Completion with Calibrated Backprojection Layers PyTorch implementation of Unsupervised Depth Completion with Calibrated Backprojec

80 Dec 13, 2022
An implementation of DeepMind's Relational Recurrent Neural Networks in PyTorch.

relational-rnn-pytorch An implementation of DeepMind's Relational Recurrent Neural Networks (Santoro et al. 2018) in PyTorch. Relational Memory Core (

Sang-gil Lee 241 Nov 18, 2022
Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Time Using Noisy Proxies

Deconfounding Temporal Autoencoder (DTA) This is a repository for the paper "Deconfounding Temporal Autoencoder: Estimating Treatment Effects over Tim

Milan Kuzmanovic 3 Feb 04, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
A toolset of Python programs for signal modeling and indentification via sparse semilinear autoregressors.

SPAAR Description A toolset of Python programs for signal modeling via sparse semilinear autoregressors. References Vides, F. (2021). Computing Semili

Fredy Vides 0 Oct 30, 2021
A working implementation of the Categorical DQN (Distributional RL).

Categorical DQN. Implementation of the Categorical DQN as described in A distributional Perspective on Reinforcement Learning. Thanks to @tudor-berari

Florin Gogianu 98 Sep 20, 2022