Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Overview

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this model: nbviewer

Generative Query Network

This is a PyTorch implementation of the Generative Query Network (GQN) described in the DeepMind paper "Neural scene representation and rendering" by Eslami et al. For an introduction to the model and problem described in the paper look at the article by DeepMind.

The current implementation generalises to any of the datasets described in the paper. However, currently, only the Shepard-Metzler dataset has been implemented. To use this dataset you can use the provided script in

sh scripts/data.sh data-dir batch-size

The model can be trained in full by in accordance to the paper by running the file run-gqn.py or by using the provided training script

sh scripts/gpu.sh data-dir

Implementation

The implementation shown in this repository consists of all of the representation architectures described in the paper along with the generative model that is similar to the one described in "Towards conceptual compression" by Gregor et al.

Additionally, this repository also contains implementations of the DRAW model and the ConvolutionalDRAW model both described by Gregor et al.

Comments
  • Training time and testing demo

    Training time and testing demo

    Hi Jesper,

    Thank you for your great code of gqn in real image, I am a little curious about the following issues: How many epochs it use to train a model on real image? How many training data do you use (percentage of full training dataset)? Can you show a testing demo?

    Thank you very much!

    Best wishes, Mingjia Chen

    opened by mjchen611 22
  • ConvLSTM did not concat hidden from last round

    ConvLSTM did not concat hidden from last round

    In the structure presented in the paper, the hidden from last round is concat with input and then proceed for other operation. But it seems your LSTM did not use the hidden information from previous round.

    opened by Tom-the-Cat 7
  • Bad images in training

    Bad images in training

    While playing around with the sm5 dataset, I noticed some of them are badly rendered. individualimage Not sure if this will pose any problem for training, just wanted to point this out.

    opened by versatran01 7
  • Question about generator

    Question about generator

    In the top docstring of generator.py, you mentioned that

    The inference-generator architecture is conceptually
    similar to the encoder-decoder pair seen in variational
    autoencoders.
    

    I don't quite understand this part and I would really appreciate if you could explain a bit or point me at some related aritcles. For the generator I can see how it is similar to a decoder, where it takes latent z, query viewpoint v, and aggregated representation r and eventually output the image x_mu.

    But I'm a bit confused by the inference being the conterpart of encoder.

    opened by versatran01 7
  • Loss Change

    Loss Change

    Dear wohlert,

    May I consult you several questions?

    1. I tried to train this network on Mazes Data from https://github.com/deepmind/gqn-datasets. Actually it just contains 5% data, which is around 110000, instead of the full data. Is it right?

    2. I trained 30000 steps, but the elbo loss only converged to 6800 which has a big difference compared to around 7 in the supplementary. So may I ask what is the approximate value do you achieve on the data you used?

    3. From the visualisation based on Question 2, the reconstruction seems to be reasonable. But the sampling results is quite bad. Do you meet the same problem?

    Many thanks, Bing

    opened by BingCS 5
  • Questions on data preparing

    Questions on data preparing

    Hi, Wohlert:

    After the data conversion with your scripts, I visualize some of the images in the *.pt found pictures like this Figure_1-1

    What's wrong with that Also I'm confused about your batch operation , say if you batch the sequences as you convert them, does it mean that you won't batch them again when use dataloader?

    Thanks

    opened by Kyridiculous2 5
  • Training crashes at the same spot for both Shepard Metzler datasets

    Training crashes at the same spot for both Shepard Metzler datasets

    Some context:

    • I downloaded and converted the datasets via data.sh and set batch size to 12. Note that I am using TensorFlow 1.14 for reading the tfrecord files and converting them.
    • I use gpu.sh to run the training script. I set the batch size to either of [1,12,36,72] and DataParallel to True to use 4 GPUs

    But after a shrot time I get the following errors if I use any batch size higher than 1. This happens on iterations 40, 13 and 6 with batch sizes 12, 36 and 72. This happens for both Shepard Metzler datasets. Why I am getting these errors? Does batch size 1 on the training code mean reading one of the .pt.gz files? If so, setting batch size to 1 in the training script should actually mean 12. Would that be correct?

    Here's what I get for the data set with 5 parts when I set batch size to 36 for instance:

    Epoch [1/200]: [13/1856]   1%|▊                                                                                                                       , elbo=-2.1e+4, kl=827, mu=5e-6, sigma=2 [00:21<52:34]Current run is terminating due to exception: Caught RuntimeError in DataLoader worker process 13.
    Original Traceback (most recent call last):
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/worker.py", line 178, in _worker_loop
        data = fetcher.fetch(index)
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py", line 47, in fetch
        return self.collate_fn(data)
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/collate.py", line 79, in default_collate
        return [default_collate(samples) for samples in transposed]
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/collate.py", line 79, in <listcomp>
        return [default_collate(samples) for samples in transposed]
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/collate.py", line 55, in default_collate
        return torch.stack(batch, 0, out=out)
    RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 12 and 8 in dimension 1 at /pytorch/aten/src/TH/generic/THTensor.cpp:689
    .
    Engine run is terminating due to exception: Caught RuntimeError in DataLoader worker process 13.
    Original Traceback (most recent call last):
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/worker.py", line 178, in _worker_loop
        data = fetcher.fetch(index)
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py", line 47, in fetch
        return self.collate_fn(data)
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/collate.py", line 79, in default_collate
        return [default_collate(samples) for samples in transposed]
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/collate.py", line 79, in <listcomp>
        return [default_collate(samples) for samples in transposed]
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/collate.py", line 55, in default_collate
        return torch.stack(batch, 0, out=out)
    RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 12 and 8 in dimension 1 at /pytorch/aten/src/TH/generic/THTensor.cpp:689
    .
    Traceback (most recent call last):
      File "../run-gqn.py", line 183, in <module>
        trainer.run(train_loader, args.n_epochs)
      File "/usr/local/lib/python3.6/dist-packages/ignite/engine/engine.py", line 850, in run
        return self._internal_run()
      File "/usr/local/lib/python3.6/dist-packages/ignite/engine/engine.py", line 952, in _internal_run
        self._handle_exception(e)
      File "/usr/local/lib/python3.6/dist-packages/ignite/engine/engine.py", line 714, in _handle_exception
        self._fire_event(Events.EXCEPTION_RAISED, e)
      File "/usr/local/lib/python3.6/dist-packages/ignite/engine/engine.py", line 607, in _fire_event
        func(self, *(event_args + args), **kwargs)
      File "../run-gqn.py", line 181, in handle_exception
        else: raise e
      File "/usr/local/lib/python3.6/dist-packages/ignite/engine/engine.py", line 937, in _internal_run
        hours, mins, secs = self._run_once_on_dataset()
      File "/usr/local/lib/python3.6/dist-packages/ignite/engine/engine.py", line 705, in _run_once_on_dataset
        self._handle_exception(e)
      File "/usr/local/lib/python3.6/dist-packages/ignite/engine/engine.py", line 714, in _handle_exception
        self._fire_event(Events.EXCEPTION_RAISED, e)
      File "/usr/local/lib/python3.6/dist-packages/ignite/engine/engine.py", line 607, in _fire_event
        func(self, *(event_args + args), **kwargs)
      File "../run-gqn.py", line 181, in handle_exception
        else: raise e
      File "/usr/local/lib/python3.6/dist-packages/ignite/engine/engine.py", line 655, in _run_once_on_dataset
        batch = next(self._dataloader_iter)
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py", line 801, in __next__
        return self._process_data(data)
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/dataloader.py", line 846, in _process_data
        data.reraise()
      File "/usr/local/lib/python3.6/dist-packages/torch/_utils.py", line 385, in reraise
        raise self.exc_type(msg)
    RuntimeError: Caught RuntimeError in DataLoader worker process 13.
    Original Traceback (most recent call last):
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/worker.py", line 178, in _worker_loop
        data = fetcher.fetch(index)
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/fetch.py", line 47, in fetch
        return self.collate_fn(data)
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/collate.py", line 79, in default_collate
        return [default_collate(samples) for samples in transposed]
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/collate.py", line 79, in <listcomp>
        return [default_collate(samples) for samples in transposed]
      File "/usr/local/lib/python3.6/dist-packages/torch/utils/data/_utils/collate.py", line 55, in default_collate
        return torch.stack(batch, 0, out=out)
    RuntimeError: invalid argument 0: Sizes of tensors must match except in dimension 0. Got 12 and 8 in dimension 1 at /pytorch/aten/src/TH/generic/THTensor.cpp:689
    
    opened by Amir-Arsalan 4
  • AttributeError: 'int' object has no attribute 'size'

    AttributeError: 'int' object has no attribute 'size'

    in draw.py, I get this error at the line 118 (batch_size = z.size(0)) Sorry if this is obvious, thanks for help anyway.

    ~ % pip show torch :( Name: torch Version: 1.0.1.post2

    opened by DRM-Free 4
  • Increase dimension of viewpoint and representation

    Increase dimension of viewpoint and representation

    Thanks for this implementation. One question I have is when increasing the dimension of viewpoint and representation, you use torch.repeat. Is there any reason for this? Can one possibly use interpolate?

    In the original paper it says "when concatenating viewpoint v to an image or feature map, its values are ‘broadcast’ in the spatial dimensions to obtain the correct size. "

    The word 'broadcast' is not precisely defined, hence the question.

    opened by versatran01 4
  • Learning rate change

    Learning rate change

    Regarding line 113 of run-gqn.py. Does this change the learning rate of the Adam optimizer? This post shows something different

    https://stackoverflow.com/questions/48324152/pytorch-how-to-change-the-learning-rate-of-an-optimizer-at-any-given-moment-no

    opened by david-bernstein 4
  • Using the rooms data?

    Using the rooms data?

    I wanted to try your code on the rooms data but during conversion, I get these errors. What could I be doing wrong? Note that for the rooms data with moving camera I set the number of camera parameters to 7:

    Traceback (most recent call last):
      File "/usr/lib/python3.6/multiprocessing/pool.py", line 119, in worker
        result = (True, func(*args, **kwds))
      File "/usr/lib/python3.6/multiprocessing/pool.py", line 44, in mapstar
        return list(map(*args))
      File "tfrecord-converter.py", line 66, in convert
        for i, batch in enumerate(batch_process(record)):
      File "tfrecord-converter.py", line 29, in chunk
        for first in iterator:
      File "tfrecord-converter.py", line 40, in process
        'cameras': tf.FixedLenFeature(shape=SEQ_DIM * POSE_DIM, dtype=tf.float32)
      File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/parsing_ops.py", line 1019, in parse_single_example
        serialized, features, example_names, name
      File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/parsing_ops.py", line 1063, in parse_single_example_v2_unoptimized
        return parse_single_example_v2(serialized, features, name)
      File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/parsing_ops.py", line 2089, in parse_single_example_v2
        dense_defaults, dense_shapes, name)
      File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/parsing_ops.py", line 2206, in _parse_single_example_v2_raw
        name=name)
      File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/gen_parsing_ops.py", line 1164, in parse_single_example
        ctx=_ctx)
      File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/gen_parsing_ops.py", line 1260, in parse_single_example_eager_fallback
        attrs=_attrs, ctx=_ctx, name=name)
      File "/usr/local/lib/python3.6/dist-packages/tensorflow/python/eager/execute.py", line 67, in quick_execute
        six.raise_from(core._status_to_exception(e.code, message), None)
      File "<string>", line 3, in raise_from
    tensorflow.python.framework.errors_impl.InvalidArgumentError: Key: frames.  Can't parse serialized Example. [Op:ParseSingleExample]
    """
    
    The above exception was the direct cause of the following exception:
    
    Traceback (most recent call last):
      File "tfrecord-converter.py", line 98, in <module>
        pool.map(f, records)
      File "/usr/lib/python3.6/multiprocessing/pool.py", line 266, in map
        return self._map_async(func, iterable, mapstar, chunksize).get()
      File "/usr/lib/python3.6/multiprocessing/pool.py", line 644, in get
        raise self._value
    tensorflow.python.framework.errors_impl.InvalidArgumentError: Key: frames.  Can't parse serialized Example. [Op:ParseSingleExample]
    
    opened by Amir-Arsalan 3
Releases(0.1)
Owner
Jesper Wohlert
Jesper Wohlert
Deep Learning Package based on TensorFlow

White-Box-Layer is a Python module for deep learning built on top of TensorFlow and is distributed under the MIT license. The project was started in M

YeongHyeon Park 7 Dec 27, 2021
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition"

Code for Two-stage Identifier: "Locate and Label: A Two-stage Identifier for Nested Named Entity Recognition", accepted at ACL 2021. For details of the model and experiments, please see our paper.

tricktreat 87 Dec 16, 2022
[ICCV 2021] Our work presents a novel neural rendering approach that can efficiently reconstruct geometric and neural radiance fields for view synthesis.

MVSNeRF Project page | Paper This repository contains a pytorch lightning implementation for the ICCV 2021 paper: MVSNeRF: Fast Generalizable Radiance

Anpei Chen 529 Dec 30, 2022
ADOP: Approximate Differentiable One-Pixel Point Rendering

ADOP: Approximate Differentiable One-Pixel Point Rendering Abstract: We present a novel point-based, differentiable neural rendering pipeline for scen

Darius Rückert 1.9k Jan 06, 2023
PyTorch code of my ICDAR 2021 paper Vision Transformer for Fast and Efficient Scene Text Recognition (ViTSTR)

Vision Transformer for Fast and Efficient Scene Text Recognition (ICDAR 2021) ViTSTR is a simple single-stage model that uses a pre-trained Vision Tra

Rowel Atienza 198 Dec 27, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
HybVIO visual-inertial odometry and SLAM system

HybVIO A visual-inertial odometry system with an optional SLAM module. This is a research-oriented codebase, which has been published for the purposes

Spectacular AI 320 Jan 03, 2023
Code and project page for ICCV 2021 paper "DisUnknown: Distilling Unknown Factors for Disentanglement Learning"

DisUnknown: Distilling Unknown Factors for Disentanglement Learning See introduction on our project page Requirements PyTorch = 1.8.0 torch.linalg.ei

Sitao Xiang 24 May 16, 2022
This was initially the repo for the project of [email protected] of Asaf Mazar, Millad Kassaie and Georgios Chochlakis named "Powered by the Will? Exploring Lay Theories of Behavior Change through Social Media"

Subreddit Analysis This repo includes tools for Subreddit analysis, originally developed for our class project of PSYC 626 in USC, titled "Powered by

Georgios Chochlakis 1 Dec 17, 2021
VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech

VITS: Conditional Variational Autoencoder with Adversarial Learning for End-to-End Text-to-Speech Jaehyeon Kim, Jungil Kong, and Juhee Son In our rece

Jaehyeon Kim 1.7k Jan 08, 2023
Align and Prompt: Video-and-Language Pre-training with Entity Prompts

ALPRO Align and Prompt: Video-and-Language Pre-training with Entity Prompts [Paper] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles, Steven C.H

Salesforce 127 Dec 21, 2022
Contextual Attention Localization for Offline Handwritten Text Recognition

CALText This repository contains the source code for CALText model introduced in "CALText: Contextual Attention Localization for Offline Handwritten T

0 Feb 17, 2022
Subdivision-based Mesh Convolutional Networks

Subdivision-based Mesh Convolutional Networks The official implementation of SubdivNet in our paper, Subdivion-based Mesh Convolutional Networks Requi

Zheng-Ning Liu 181 Dec 28, 2022
An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym

gym-idsgame An Abstract Cyber Security Simulation and Markov Game for OpenAI Gym gym-idsgame is a reinforcement learning environment for simulating at

Kim Hammar 29 Dec 03, 2022
Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains

Lex Rosetta: Transfer of Predictive Models Across Languages, Jurisdictions, and Legal Domains This is an accompanying repository to the ICAIL 2021 pap

4 Dec 16, 2021
An excellent hash algorithm combining classical sponge structure and RNN.

SHA-RNN Recurrent Neural Network with Chaotic System for Hash Functions Anonymous Authors [摘要] 在这次作业中我们提出了一种新的 Hash Function —— SHA-RNN。其以海绵结构为基础,融合了混

Houde Qian 5 May 15, 2022
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022