Accelerating BERT Inference for Sequence Labeling via Early-Exit

Overview

Sequence-Labeling-Early-Exit

Code for ACL 2021 paper: Accelerating BERT Inference for Sequence Labeling via Early-Exit

Requirement:

Please refer to requirements.txt

How to run?

For ontonotes (CN):

you should claim your dataset path in paths.py, and then

For the first stage training:

python -u main.py --device 0  --seed 100 --fast_ptm_name bert --lr 5e-5  --use_crf 0 --dataset ontonotes_cn --fix_ptm_epoch 2 --warmup_step 3000 --use_fastnlp_bert 0 --sampler bucket  --after_bert linear --use_char 0 --use_bigram 0 --gradient_clip_norm_other 5 --gradient_clip_norm_bert 1 --train_mode joint --test_mode joint --if_save 1 --warmup_schedule inverse_square --epoch 20 --joint_weighted 1 --ptm_lr_rate 0.1 --cls_common_lr_scale 0

Then find the exp_path in the corresponding fitlog entry, and self-sampling further train the model.

For the self-sampling training:

python -u further_train.py --seed 100 --msg fuxian --if_save 1 --warmup_schedule inverse_square --epoch 30 --keep_norm_same 1 --sandwich_small 2 --sandwich_full 4 --max_t_level_t -0.5 --train_mode joint_sample_copy --further 0 --flooding 1 --flooding_bias 0 --lr 1e-4 --ptm_lr_rate 0.1 --fix_ptm_epoch 2 --min_win_size 5 --copy_wordpiece all --ckpt_epoch 7 --exp_path 05_11_22_20_52.210103 --device 2 --max_threshold 0.25 --max_threshold_2 0.5

Then find the exp_path and best epoch in the corresponding fitlog entry, and use it for early-exit inference as:

speed 2X:
python test.py --device 2 --further 1 --record_flops 1 --win_size 15 --threshold 0.1 --ckpt_epoch [ckpt_path] --exp_path [exp_path]
speed 3X:
python test.py --device 2 --further 1 --record_flops 1 --win_size 5 --threshold 0.15 --ckpt_epoch [ckpt_path] --exp_path [exp_path]
speed 4X:
python test.py --device 2 --further 1 --record_flops 1 --win_size 5 --threshold 0.25 --ckpt_epoch [ckpt_path] --exp_path [exp_path]


Other datasets' scripts coming soon

If you have any question, do not hesitate to ask it in issue. (English or Chinese both ok)

Owner
李孝男
a little bird
李孝男
PyTorch implementation of the Crafting Better Contrastive Views for Siamese Representation Learning

Crafting Better Contrastive Views for Siamese Representation Learning This is the official PyTorch implementation of the ContrastiveCrop paper: @artic

249 Dec 28, 2022
JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Court’s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Notes taking website build with Docker + Django + React.

Notes website. Try it in browser! / But how to run? Description. This is monorepository with notes website. Website provides web interface for creatin

Kirill Zhosul 2 Jul 27, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
An Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering

PC-SOS-SDP: an Exact Solver for Semi-supervised Minimum Sum-of-Squares Clustering PC-SOS-SDP is an exact algorithm based on the branch-and-bound techn

Antonio M. Sudoso 1 Nov 13, 2022
Contains supplementary materials for reproduce results in HMC divergence time estimation manuscript

Scalable Bayesian divergence time estimation with ratio transformations This repository contains the instructions and files to reproduce the analyses

Suchard Research Group 1 Sep 21, 2022
The `rtdl` library + The official implementation of the paper

The `rtdl` library + The official implementation of the paper "Revisiting Deep Learning Models for Tabular Data"

Yandex Research 510 Dec 30, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
Efficient and intelligent interactive segmentation annotation software

Efficient and intelligent interactive segmentation annotation software

294 Dec 30, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose

WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose Yijun Zhou and James Gregson - BMVC2020 Abstract: We present an end-to-end head-pos

368 Dec 26, 2022
Meta Learning for Semi-Supervised Few-Shot Classification

few-shot-ssl-public Code for paper Meta-Learning for Semi-Supervised Few-Shot Classification. [arxiv] Dependencies cv2 numpy pandas python 2.7 / 3.5+

Mengye Ren 501 Jan 08, 2023
Segmentation models with pretrained backbones. PyTorch.

Python library with Neural Networks for Image Segmentation based on PyTorch. The main features of this library are: High level API (just two lines to

Pavel Yakubovskiy 6.6k Jan 06, 2023
Explaining neural decisions contrastively to alternative decisions.

Contrastive Explanations for Model Interpretability This is the repository for the paper "Contrastive Explanations for Model Interpretability", about

AI2 16 Oct 16, 2022
Calibrate your listeners! Robust communication-based training for pragmatic speakers. Findings of EMNLP 2021.

Calibrate your listeners! Robust communication-based training for pragmatic speakers Rose E. Wang, Julia White, Jesse Mu, Noah D. Goodman Findings of

Rose E. Wang 3 Apr 02, 2022
Read number plates with https://platerecognizer.com/

HASS-plate-recognizer Read vehicle license plates with https://platerecognizer.com/ which offers free processing of 2500 images per month. You will ne

Robin 69 Dec 30, 2022
BOVText: A Large-Scale, Multidimensional Multilingual Dataset for Video Text Spotting

BOVText: A Large-Scale, Bilingual Open World Dataset for Video Text Spotting Updated on December 10, 2021 (Release all dataset(2021 videos)) Updated o

weijiawu 47 Dec 26, 2022
[CVPR 2022 Oral] Balanced MSE for Imbalanced Visual Regression https://arxiv.org/abs/2203.16427

Balanced MSE Code for the paper: Balanced MSE for Imbalanced Visual Regression Jiawei Ren, Mingyuan Zhang, Cunjun Yu, Ziwei Liu CVPR 2022 (Oral) News

Jiawei Ren 267 Jan 01, 2023