Code for "Learning the Best Pooling Strategy for Visual Semantic Embedding", CVPR 2021

Overview

Learning the Best Pooling Strategy for Visual Semantic Embedding

License: MIT

Official PyTorch implementation of the paper Learning the Best Pooling Strategy for Visual Semantic Embedding (CVPR 2021 Oral).

Please use the following bib entry to cite this paper if you are using any resources from the repo.

@inproceedings{chen2021vseinfty,
     title={Learning the Best Pooling Strategy for Visual Semantic Embedding},
     author={Chen, Jiacheng and Hu, Hexiang and Wu, Hao and Jiang, Yuning and Wang, Changhu},
     booktitle={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
     year={2021}
} 

We referred to the implementations of VSE++ and SCAN to build up our codebase.

Introduction

Illustration of the standard Visual Semantic Embedding (VSE) framework with the proposed pooling-based aggregator, i.e., Generalized Pooling Operator (GPO). It is simple and effective, which automatically adapts to the appropriate pooling strategy given different data modality and feature extractor, and improves VSE models at negligible extra computation cost.

Image-text Matching Results

The following tables show partial results of image-to-text retrieval on COCO and Flickr30K datasets. In these experiments, we use BERT-base as the text encoder for our methods. This branch provides our code and pre-trained models for using BERT as the text backbone, please check out to the bigru branch for the code and pre-trained models for using BiGRU as the text backbone.

Note that the VSE++ entries in the following tables are the VSE++ model with the specified feature backbones, thus the results are different from the original VSE++ paper.

Results of 5-fold evaluation on COCO 1K Test Split

Visual Backbone Text Backbone R1 R5 R1 R5 Link
VSE++ BUTD region BERT-base 67.9 91.9 54.0 85.6 -
VSEInfty BUTD region BERT-base 79.7 96.4 64.8 91.4 Here
VSEInfty BUTD grid BERT-base 80.4 96.8 66.4 92.1 Here
VSEInfty WSL grid BERT-base 84.5 98.1 72.0 93.9 Here

Results on Flickr30K Test Split

Visual Backbone Text Backbone R1 R5 R1 R5 Link
VSE++ BUTD region BERT-base 63.4 87.2 45.6 76.4 -
VSEInfty BUTD region BERT-base 81.7 95.4 61.4 85.9 Here
VSEInfty BUTD grid BERT-base 81.5 97.1 63.7 88.3 Here
VSEInfty WSL grid BERT-base 88.4 98.3 74.2 93.7 Here

Result (in [email protected]) on Crisscrossed Caption benchmark (trained on COCO)

Visual Backbone Text Backbone I2T T2I T2T I2I
VSRN BUTD region BiGRU 52.4 40.1 41.0 44.2
DE EfficientNet-B4 grid BERT-base 55.9 41.7 42.6 38.5
VSEInfty BUTD grid BERT-base 60.6 46.2 45.9 44.4
VSEInfty WSL grid BERT-base 67.9 53.6 46.7 51.3

Preparation

Environment

We trained and evaluated our models with the following key dependencies:

  • Python 3.7.3

  • Pytorch 1.2.0

  • Transformers 2.1.0

Run pip install -r requirements.txt to install the exactly same dependencies as our experiments. However, we also verified that using the latest Pytorch 1.8.0 and Transformers 4.4.2 can also produce similar results.

Data

We organize all data used in the experiments in the following manner:

data
├── coco
│   ├── precomp  # pre-computed BUTD region features for COCO, provided by SCAN
│   │      ├── train_ids.txt
│   │      ├── train_caps.txt
│   │      ├── ......
│   │
│   ├── images   # raw coco images
│   │      ├── train2014
│   │      └── val2014
│   │
│   ├── cxc_annots # annotations for evaluating COCO-trained models on the CxC benchmark
│   │
│   └── id_mapping.json  # mapping from coco-id to image's file name
│   
│
├── f30k
│   ├── precomp  # pre-computed BUTD region features for Flickr30K, provided by SCAN
│   │      ├── train_ids.txt
│   │      ├── train_caps.txt
│   │      ├── ......
│   │
│   ├── flickr30k-images   # raw coco images
│   │      ├── xxx.jpg
│   │      └── ...
│   └── id_mapping.json  # mapping from f30k index to image's file name
│   
├── weights
│      └── original_updown_backbone.pth # the BUTD CNN weights
│
└── vocab  # vocab files provided by SCAN (only used when the text backbone is BiGRU)

The download links for original COCO/F30K images, precomputed BUTD features, and corresponding vocabularies are from the offical repo of SCAN. The precomp folders contain pre-computed BUTD region features, data/coco/images contains raw MS-COCO images, and data/f30k/flickr30k-images contains raw Flickr30K images.

The id_mapping.json files are the mapping from image index (ie, the COCO id for COCO images) to corresponding filenames, we generated these mappings to eliminate the need of the pycocotools package.

weights/original_updowmn_backbone.pth is the pre-trained ResNet-101 weights from Bottom-up Attention Model, we converted the original Caffe weights into Pytorch. Please download it from this link.

The data/coco/cxc_annots directory contains the necessary data files for running the Criscrossed Caption (CxC) evaluation. Since there is no official evaluation protocol in the CxC repo, we processed their raw data files and generated these data files to implement our own evaluation. We have verified our implementation by aligning the evaluation results of the official VSRN model with the ones reported by the CxC paper Please download the data files at this link.

Please download all necessary data files and organize them in the above manner, the path to the data directory will be the argument to the training script as shown below.

Training

Assuming the data root is /tmp/data, we provide example training scripts for:

  1. Grid feature with BUTD CNN for the image feature, BERT-base for the text feature. See train_grid.sh

  2. BUTD Region feature for the image feature, BERT-base for the text feature. See train_region.sh

To use other CNN initializations for the grid image feature, change the --backbone_source argument to different values:

  • (1). the default detector is to use the BUTD ResNet-101, we have adapted the original Caffe weights into Pytorch and provided the download link above;
  • (2). wsl is to use the backbones from large-scale weakly supervised learning;
  • (3). imagenet_res152 is to use the ResNet-152 pre-trained on ImageNet.

Evaluation

Run eval.py to evaluate specified models on either COCO and Flickr30K. For evaluting pre-trained models on COCO, use the following command (assuming there are 4 GPUs, and the local data path is /tmp/data):

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 eval.py --dataset coco --data_path /tmp/data/coco

For evaluting pre-trained models on Flickr-30K, use the command:

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 eval.py --dataset f30k --data_path /tmp/data/f30k

For evaluating pre-trained COCO models on the CxC dataset, use the command:

CUDA_VISIBLE_DEVICES=0,1,2,3 python3 eval.py --dataset coco --data_path /tmp/data/coco --evaluate_cxc

For evaluating two-model ensemble, first run single-model evaluation commands above with the argument --save_results, and then use eval_ensemble.py to get the results (need to manually specify the paths to the saved results).

Owner
Jiacheng Chen
Jiacheng Chen
The repository is for safe reinforcement learning baselines.

Safe-Reinforcement-Learning-Baseline The repository is for Safe Reinforcement Learning (RL) research, in which we investigate various safe RL baseline

172 Dec 19, 2022
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
General neural ODE and DAE modules for power system dynamic modeling.

Py_PSNODE General neural ODE and DAE modules for power system dynamic modeling. The PyTorch-based ODE solver is developed based on torchdiffeq. Sample

14 Dec 31, 2022
Regularizing Generative Adversarial Networks under Limited Data (CVPR 2021)

Regularizing Generative Adversarial Networks under Limited Data [Project Page][Paper] Implementation for our GAN regularization method. The proposed r

Google 148 Nov 18, 2022
An Active Automata Learning Library Written in Python

AALpy An Active Automata Learning Library AALpy is a light-weight active automata learning library written in pure Python. You can start learning auto

TU Graz - SAL Dependable Embedded Systems Lab (DES Lab) 78 Dec 30, 2022
Code for visualizing the loss landscape of neural nets

Visualizing the Loss Landscape of Neural Nets This repository contains the PyTorch code for the paper Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer

Tom Goldstein 2.2k Jan 09, 2023
A list of Machine Learning Art Colabs

ML Visual Art Colabs A list of cool Colabs on Machine Learning Imagemaking or other artistic purposes 3D Ken Burns Effect Ken Burns Effect by Manuel R

Derrick Schultz (he/him) 789 Dec 12, 2022
CondNet: Conditional Classifier for Scene Segmentation

CondNet: Conditional Classifier for Scene Segmentation Introduction The fully convolutional network (FCN) has achieved tremendous success in dense vis

ycszen 31 Jul 22, 2022
HiFT: Hierarchical Feature Transformer for Aerial Tracking (ICCV2021)

HiFT: Hierarchical Feature Transformer for Aerial Tracking Ziang Cao, Changhong Fu, Junjie Ye, Bowen Li, and Yiming Li Our paper is Accepted by ICCV 2

Intelligent Vision for Robotics in Complex Environment 55 Nov 23, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
The official code of "SCROLLS: Standardized CompaRison Over Long Language Sequences".

SCROLLS This repository contains the official code of the paper: "SCROLLS: Standardized CompaRison Over Long Language Sequences". Links Official Websi

TAU NLP Group 39 Dec 23, 2022
Vision transformers (ViTs) have found only limited practical use in processing images

CXV Convolutional Xformers for Vision Vision transformers (ViTs) have found only limited practical use in processing images, in spite of their state-o

Cloudwalker 23 Sep 10, 2022
Benchmarks for semi-supervised domain generalization.

Semi-Supervised Domain Generalization This code is the official implementation of the following paper: Semi-Supervised Domain Generalization with Stoc

Kaiyang 49 Dec 10, 2022
A full pipeline AutoML tool for tabular data

HyperGBM Doc | 中文 We Are Hiring! Dear folks,we are offering challenging opportunities located in Beijing for both professionals and students who are k

DataCanvas 240 Jan 03, 2023
A Python module for the generation and training of an entry-level feedforward neural network.

ff-neural-network A Python module for the generation and training of an entry-level feedforward neural network. This repository serves as a repurposin

Riadh 2 Jan 31, 2022
Implementation of gaze tracking and demo

Predicting Customer Demand by Using Gaze Detecting and Object Tracking This project is the integration of gaze detecting and object tracking. Predict

2 Oct 20, 2022
Deep Learning Training Scripts With Python

Deep Learning Training Scripts DNN Frameworks Caffe PyTorch Tensorflow CNN Models VGG ResNet DenseNet Inception Language Modeling GatedCNN-LM Attentio

Multicore Computing Research Lab 16 Dec 15, 2022
An educational resource to help anyone learn deep reinforcement learning.

Status: Maintenance (expect bug fixes and minor updates) Welcome to Spinning Up in Deep RL! This is an educational resource produced by OpenAI that ma

OpenAI 7.6k Jan 09, 2023
Official Pytorch implementation for AAAI2021 paper (RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning)

RSPNet Official Pytorch implementation for AAAI2021 paper "RSPNet: Relative Speed Perception for Unsupervised Video Representation Learning" [Suppleme

35 Jun 24, 2022