[NeurIPS '21] Adversarial Attacks on Graph Classification via Bayesian Optimisation (GRABNEL)

Related tags

Deep Learninggrabnel
Overview

Adversarial Attacks on Graph Classification via Bayesian Optimisation @ NeurIPS 2021

overall-pipeline

This repository contains the official implementation of GRABNEL, a Bayesian optimisation-based adversarial agent to conduct adversarial attacks on graph classification models. GRABNEL currently supports various topological attacks, such as via edge flipping (incl. both addition or deletion), node injection and edge swapping. We also include implementations of a number of baseline methods including random search, genetic algorithm [1] and a gradient-based white-box attacker (available on some victim model choices). We also implement a number of victim models, namely:

  • Graph convolution networks (GCN) [2]
  • Graph isomorphism networks (GIN) [3]
  • ChebyGIN [4] (only for MNIST-75sp task)
  • Graph U-Net [5]
  • S2V (only for the ER Graph task in [1])

For details please take a look at our paper: abstract / pdf.

The code repository also contains instructions for the TU datasets [6] in the DGL framework, as well as the MNIST-75sp dataset in [4]. For the Twitter dataset we used for node injection tasks, we are not authorised to redistribute the dataset and you have to ask for permission from the authors of [7] directly.

If you find our work to be useful for your research, please consider citing us:

Wan, Xingchen, Henry Kenlay, Binxin Ru, Arno Blaas, Michael A. Osborne, and Xiaowen Dong. "Adversarial Attacks on Graph Classifiers via Bayesian Optimisation." In Thirty-Fifth Conference on Neural Information Processing Systems. 2021.

Or in bibtex:

@inproceedings{wan2021adversarial,
  title={Adversarial Attacks on Graph Classifiers via Bayesian Optimisation},
  author={Wan, Xingchen and Kenlay, Henry and Ru, Binxin and Blaas, Arno and Osborne, Michael and Dong, Xiaowen},
  booktitle={Thirty-Fifth Conference on Neural Information Processing Systems},
  year={2021}
}

Instructions for use

  1. Install the required packages in requirements.txt

For TU Dataset(s):

  1. Train a selected architecture (GCN/GIN). Taking an example of GCN training on the PROTEINS dataset. By default DGL will download the requested dataset under ~/.dgl directory. If it throws an error, you might have to manually download the dataset and add to the appropriate directory.
python3 train_model.py --dataset PROTEINS --model gcn --seed $YOUR_SEED 

This by default deposits the trained victim model under src/output/models and the training log under src/output/training_logs.

  1. Evaluate the victim model on a separate test set. Run
python3 evaluate_model.py --dataset PROTEINS --seed $YOUR_SEED  --model gcn

This by default will create evaluation logs under src/output/evaluation_logs.

  1. Run the attack algorithm.
cd scripts && python3 run_bo_tu.py --dataset PROTEINS --save_path $YOUR_SAVE_PATH --model_path $YOUR_MODEL_PATH --seed $YOUR_SEED --model gcn

With no method specified, the script runs GRABNEL by default. You may use the -m to specify if, for example, you'd like to run one of the baseline methods mentioned above instead.

For the MNIST-75sp task For MNIST-75sp, we use the pre-trained model released by the authors of [4] as the victim model, so there is no need to train a victim model separately (unless you wish to).

  1. Generate the MNIST-75sp dataset. Here we use an adapted script from [4], but added a converter to ensure that the dataset generated complies with the rest of our code base (DGL-compliant, etc). You need to download the MNIST dataset beforehand (or use the torchvision download facility. Either is fine)
cd data && python3 build_mnist.py -D mnist -d $YOUR_DATA_PATH -o $YOUR_SAVE_PATH  

The output should be a pickle file mnist_75sp.p. Place it under $PROJECT_ROOT/src/data/

  1. Download the pretrained model from https://github.com/bknyaz/graph_attention_pool. The pretrained checkpointed model we use is checkpoint_mnist-75sp_139255_epoch30_seed0000111.pth.tar. Deposit the model under src/output/models

  2. Run attack algorithm.

cd scripts && python3 run_bo_image_classification.py --dataset mnist

References

[1] Dai, Hanjun, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. "Adversarial attack on graph structured data." In International conference on machine learning, pp. 1115-1124. PMLR, 2018.

[2] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).

[3] Xu, Keyulu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. "How powerful are graph neural networks?." arXiv preprint arXiv:1810.00826 (2018).

[4] Knyazev, Boris, Graham W. Taylor, and Mohamed R. Amer. "Understanding attention and generalization in graph neural networks." NeurIPS (2019).

[5] Gao, Hongyang, and Shuiwang Ji. "Graph u-nets." In international conference on machine learning, pp. 2083-2092. PMLR, 2019.

[6] Morris, Christopher, Nils M. Kriege, Franka Bause, Kristian Kersting, Petra Mutzel, and Marion Neumann. "Tudataset: A collection of benchmark datasets for learning with graphs." arXiv preprint arXiv:2007.08663 (2020).

[7] Vosoughi, Soroush, Deb Roy, and Sinan Aral. "The spread of true and false news online." Science 359, no. 6380 (2018): 1146-1151.

Acknowledgements

The repository builds, directly or indirectly, on multiple open-sourced code bases available online. The authors would like to express their gratitudes towards the maintainers of the following repos:

  1. https://github.com/Hanjun-Dai/graph_adversarial_attack
  2. https://github.com/DSE-MSU/DeepRobust
  3. https://github.com/HongyangGao/Graph-U-Nets
  4. https://github.com/xingchenwan/nasbowl
  5. The Deep graph library team
  6. The grakel team (https://ysig.github.io/GraKeL/0.1a8/)
Owner
Xingchen Wan
PhD Student in Machine Learning @ University of Oxford
Xingchen Wan
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
Official implementation of "One-Shot Voice Conversion with Weight Adaptive Instance Normalization".

One-Shot Voice Conversion with Weight Adaptive Instance Normalization By Shengjie Huang, Yanyan Xu*, Dengfeng Ke*, Mingjie Chen, Thomas Hain. This rep

31 Dec 07, 2022
Augmented Traffic Control: A tool to simulate network conditions

Augmented Traffic Control Full documentation for the project is available at http://facebook.github.io/augmented-traffic-control/. Overview Augmented

Meta Archive 4.3k Jan 08, 2023
The pytorch implementation of SOKD (BMVC2021).

Semi-Online Knowledge Distillation Implementations of SOKD. Requirements This repo was tested with Python 3.8, PyTorch 1.5.1, torchvision 0.6.1, CUDA

4 Dec 19, 2021
Commonsense Ability Tests

CATS Commonsense Ability Tests Dataset and script for paper Evaluating Commonsense in Pre-trained Language Models Use making_sense.py to run the exper

XUHUI ZHOU 28 Oct 19, 2022
Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal"

Patch-wise Adversarial Removal Implementation of paper "Decision-based Black-box Attack Against Vision Transformers via Patch-wise Adversarial Removal

4 Oct 12, 2022
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
Simulated garment dataset for virtual try-on

Simulated garment dataset for virtual try-on This repository contains the dataset used in the following papers: Self-Supervised Collision Handling via

33 Dec 20, 2022
SSL_SLAM2: Lightweight 3-D Localization and Mapping for Solid-State LiDAR (mapping and localization separated) ICRA 2021

SSL_SLAM2 Lightweight 3-D Localization and Mapping for Solid-State LiDAR (Intel Realsense L515 as an example) This repo is an extension work of SSL_SL

Wang Han 王晗 1.3k Jan 08, 2023
DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

DeepSpeed is a deep learning optimization library that makes distributed training easy, efficient, and effective.

Microsoft 8.4k Jan 01, 2023
Full Resolution Residual Networks for Semantic Image Segmentation

Full-Resolution Residual Networks (FRRN) This repository contains code to train and qualitatively evaluate Full-Resolution Residual Networks (FRRNs) a

Toby Pohlen 274 Oct 27, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules

Dynamic Routing Between Capsules - PyTorch implementation PyTorch implementation of NIPS 2017 paper Dynamic Routing Between Capsules from Sara Sabour,

Adam Bielski 475 Dec 24, 2022
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
Imagededup - 😎 Finding duplicate images made easy

imagededup is a python package that simplifies the task of finding exact and near duplicates in an image collection.

idealo 4.3k Jan 07, 2023
A vision library for performing sliced inference on large images/small objects

SAHI: Slicing Aided Hyper Inference A vision library for performing sliced inference on large images/small objects Overview Object detection and insta

Open Business Software Solutions 2.3k Jan 04, 2023
Unofficial PyTorch Implementation of Multi-Singer

Multi-Singer Unofficial PyTorch Implementation of Multi-Singer: Fast Multi-Singer Singing Voice Vocoder With A Large-Scale Corpus. Requirements See re

SunMail-hub 123 Dec 28, 2022
Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions"

Supplemental Code for "ImpressionNet :A Multi view Approach to Predict Socio Facial Impressions" Environment requirement This code is based on Python

Rohan Kumar Gupta 1 Dec 19, 2021
A Deep learning based streamlit web app which can tell with which bollywood celebrity your face resembles.

Project Name: Which Bollywood Celebrity You look like A Deep learning based streamlit web app which can tell with which bollywood celebrity your face

BAPPY AHMED 20 Dec 28, 2021