An experiment to bait a generalized frontrunning MEV bot

Overview

Honeypot ๐Ÿฏ

A simple experiment that:

  • Creates a honeypot contract
  • Baits a generalized fronturnning bot with a unique transaction
  • Analyze bot behaviour using a black box approach

Final project for ChainShort bootcamp Oct 2021 cohort.

Presentation Deck

The project presentation deck is in presentation directory. It gives an overview about the project.

Experiment addresses and txs

Honeypot contract address: 0x1e232d5871979eaa715de2c38381574a9c886bad

Bot contract: 0x31B7e144b2CF261A015004BEE9c84a98263E2F66

Bot operator: 0x0a04e8b4d2014cd2d07a9eaf946945bed1262a99

Failed tx 1 (block 13710082, index 22): 0xcc1172506d5b5fa09cbf66d2296deb24958181f186817eb29cbe8385fd55ed51

Frontrun tx 1 (block 13710082, index 0): 0x18ec2c2e5720c6d332a0f308f8803e834e06c78dcebdc255178891ead56c6d73

Failed tx 2 (block 13710542, index 80): 0xfce9b77a8c7b8544cb699ce646558dc506e030aaba1533c917d7841bcc3f206a

Frontrun tx 2 (block 13710542, index 0): 0x8cda6e76f9a19ce69967d9f74d52402afbafba6ca3469248fe5c9937ef065d47

Running contract tests

The contract tests are written in Solidity. To run them:

  1. Install dapptools on your machine
  2. Navigate to the project root directory in terminal, then dapp install ds-test
  3. Rename .dapprc.template to .dapprc and add your Ethereum RPC endpoint
  4. Use dapp test to run the tests.

PnL dataset

To create or update the PnL dataset:

  1. Make sure you have Python 3 and the relevant modules installed on your machine
  2. Rename config.template.py to config.py and add your Etherscan API key and Alchemy RPC endpoint
  3. Run python analysis/create_pnl_datasets.py in your terminal

Analysis

You can view the analysis files on GitHub. If you want to edit and run them, you need to run Jupyter Notebook server with Anaconda or something similar.

Known limitations

These limitaitons are known by the time of the final presentation:

  • Unoptimized performance and too many JSON-RPC calls in when fetching data
  • PnL computation is based on heuristic, not EVM state changes
  • Outlier detection is based on manual sample check
  • A few hardcoded simplifications like constant token prices
  • No test for pnl.py and calldata.py
Owner
0x1355
Parsing json. Deciphering bytes. And putting it all together again.
0x1355
Pytorch implementation of the paper: "A Unified Framework for Separating Superimposed Images", in CVPR 2020.

Deep Adversarial Decomposition PDF | Supp | 1min-DemoVideo Pytorch implementation of the paper: "Deep Adversarial Decomposition: A Unified Framework f

Zhengxia Zou 72 Dec 18, 2022
๊ณต๊ณต์žฅ์†Œ์—์„œ ๋ˆˆ๋งŒ ๋Œ๋ฆฌ๋ฉด CCTV๊ฐ€ ๋ณด์ธ๋‹ค๋Š” ๋ง์ด ๊ณผ์–ธ์ด ์•„๋‹ ์ •๋„๋กœ CCTV๊ฐ€ ์šฐ๋ฆฌ ์ƒํ™œ์— ๊นŠ์ˆ™์ด ์ž๋ฆฌ ์žก์•˜์Šต๋‹ˆ๋‹ค.

ObsCare_Main ์†Œ๊ฐœ ๊ณต๊ณต์žฅ์†Œ์—์„œ ๋ˆˆ๋งŒ ๋Œ๋ฆฌ๋ฉด CCTV๊ฐ€ ๋ณด์ธ๋‹ค๋Š” ๋ง์ด ๊ณผ์–ธ์ด ์•„๋‹ ์ •๋„๋กœ CCTV๊ฐ€ ์šฐ๋ฆฌ ์ƒํ™œ์— ๊นŠ์ˆ™์ด ์ž๋ฆฌ ์žก์•˜์Šต๋‹ˆ๋‹ค. CCTV์˜ ๋Œ€์ˆ˜๊ฐ€ ๊ธ‰๊ฒฉํžˆ ๋Š˜์–ด๋‚˜๋ฉด์„œ ๊ด€๋ฆฌ์™€ ํšจ์œจ์„ฑ ๋ฌธ์ œ์™€ ๋”๋ถˆ์–ด, ๊ณณ๊ณณ์— ์„ค์น˜๋œ CCTV๋ฅผ ๊ฐœ๋ณ„ ๊ด€์ œํ•˜๋Š” ๊ฒƒ์œผ๋กœ๋Š” ์‘๊ธ‰ ์ƒ

5 Jul 07, 2022
A PyTorch implementation of "CoAtNet: Marrying Convolution and Attention for All Data Sizes".

CoAtNet Overview This is a PyTorch implementation of CoAtNet specified in "CoAtNet: Marrying Convolution and Attention for All Data Sizes", arXiv 2021

Justin Wu 268 Jan 07, 2023
An expansion for RDKit to read all types of files in one line

RDMolReader An expansion for RDKit to read all types of files in one line How to use? Add this single .py file to your project and import MolFromFile(

Ali Khodabandehlou 1 Dec 18, 2021
Bottleneck Transformers for Visual Recognition

Bottleneck Transformers for Visual Recognition Experiments Model Params (M) Acc (%) ResNet50 baseline (ref) 23.5M 93.62 BoTNet-50 18.8M 95.11% BoTNet-

Myeongjun Kim 236 Jan 03, 2023
GMFlow: Learning Optical Flow via Global Matching

GMFlow GMFlow: Learning Optical Flow via Global Matching Authors: Haofei Xu, Jing Zhang, Jianfei Cai, Hamid Rezatofighi, Dacheng Tao We streamline the

Haofei Xu 298 Jan 04, 2023
Medical Insurance Cost Prediction using Machine earning

Medical-Insurance-Cost-Prediction-using-Machine-learning - Here in this project, I will use regression analysis to predict medical insurance cost for people in different regions, and based on several

1 Dec 27, 2021
Code and results accompanying our paper titled Mixture Proportion Estimation and PU Learning: A Modern Approach at Neurips 2021 (Spotlight)

Mixture Proportion Estimation and PU Learning: A Modern Approach This repository is the official implementation of Mixture Proportion Estimation and P

Approximately Correct Machine Intelligence (ACMI) Lab 23 Dec 28, 2022
The Official TensorFlow Implementation for SPatchGAN (ICCV2021)

SPatchGAN: Official TensorFlow Implementation Paper "SPatchGAN: A Statistical Feature Based Discriminator for Unsupervised Image-to-Image Translation"

39 Dec 30, 2022
[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

[NeurIPS'21] "AugMax: Adversarial Composition of Random Augmentations for Robust Training" by Haotao Wang, Chaowei Xiao, Jean Kossaifi, Zhiding Yu, Animashree Anandkumar, and Zhangyang Wang.

VITA 112 Nov 07, 2022
Deduplicating Training Data Makes Language Models Better

Deduplicating Training Data Makes Language Models Better This repository contains code to deduplicate language model datasets as descrbed in the paper

Google Research 431 Dec 27, 2022
Active window border replacement for window managers.

xborder Active window border replacement for window managers. Usage git clone https://github.com/deter0/xborder cd xborder chmod +x xborders ./xborder

deter 250 Dec 30, 2022
PHOTONAI is a high level python API for designing and optimizing machine learning pipelines.

PHOTONAI is a high level python API for designing and optimizing machine learning pipelines. We've created a system in which you can easily select and

Medical Machine Learning Lab - University of Mรผnster 57 Nov 12, 2022
PyTorch implementation of SQN based on CloserLook3D's encoder

SQN_pytorch This repo is an implementation of Semantic Query Network (SQN) using CloserLook3D's encoder in Pytorch. For TensorFlow implementation, che

PointCloudYC 1 Oct 21, 2021
StarGAN v2-Tensorflow - Simple Tensorflow implementation of StarGAN v2

Official Tensorflow implementation Open ! - Clova AI StarGAN v2 โ€” Un-official TensorFlow Implementation [Paper] [Pytorch] : Diverse Image Synthesis f

Junho Kim 110 Jul 02, 2022
Ganilla - Official Pytorch implementation of GANILLA

GANILLA We provide PyTorch implementation for: GANILLA: Generative Adversarial Networks for Image to Illustration Translation. Paper Arxiv Updates (Fe

Samet Hi 462 Dec 05, 2022
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
JUSTICE: A Benchmark Dataset for Supreme Courtโ€™s Judgment Prediction

JUSTICE: A Benchmark Dataset for Supreme Courtโ€™s Judgment Prediction CSCI 544 Final Project done by: Mohammed Alsayed, Shaayan Syed, Mohammad Alali, S

Smit Patel 3 Dec 28, 2022
Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

A project for counting vehicles using YOLOv4 + DeepSORT + Flask + Ngrok

Duong Tran Thanh 37 Dec 16, 2022
The Easy-to-use Dialogue Response Selection Toolkit for Researchers

Easy-to-use toolkit for retrieval-based Chatbot Recent Activity Our released RRS corpus can be found here. Our released BERT-FP post-training checkpoi

GMFTBY 32 Nov 13, 2022