This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Overview

Learning to Learn Graph Topologies

This is the official code of L2G, Unrolling and Recurrent Unrolling in Learning to Learn Graph Topologies.

Requirement

The code has been tested under:

  • Python == 3.6.0

  • PyTorch >= 1.4.0 | CUDA == 10.1

Overview

A quick summary of different folders:

  • src/models.py contains the source code for the proposed L2G and Unrolling.

  • src/baselines.py contains the source code for the iterative algorithm PDS and ADMM.

  • src/utils.py contains utility functions.

  • src/utils_data.py contains the code for generating synthetic data and graphs.

  • data/ is a folder for datasets.

  • log/ contains training logs.

  • saved_model/ is a folder to store trained models.

  • saved_results/ is a folder to store testing results.

  • data_simulation.py contains a code snippet of generating synthetic data and graphs.

  • main_L2G.py includes the code for training, validating and testing L2G.

  • main_Unrolling.py includes the code for training, validating and testing Unrolling.

Examples

As there is a requirement on the maximum file size for submissions, we cannot upload all the experimental results and dataset. However, we include all the source code and some of the results as below.

  • Training and testing L2G on scale-free networks, run:

    export PYTHONPATH=$PATHONPATH:'pwd' &&
    python data_simulation.py &&
    python main_L2G.py --graph_type='BA' --n_epochs=100

    One can find a running log of training and validation loss per epoch at logs/L2G_BA_m20_x20.log. The trained model and test results are automatically saved in saved_model/L2G_BA20_unroll20.pt and saved_results/L2G_BA20_unroll20.pt.

  • Training and testing Unrolling (ablation study) on scale-free networks, run:

    export PYTHONPATH=$PATHONPATH:'pwd' &&
    python data_simulation.py &&
    python main_Unrolling.py --graph_type='BA' --n_epochs=100
  • In L2G_WS_m50_x20.ipynb, we show a step-by-step example of training and testing L2G on small-world graphs.

For all the above examples, the results are saved in saved_results/ and the trained models are saved in saved_model/ .

Owner
Stacy X PU
A PhD Candidate in Machine Learning at Oxford
Stacy X PU
Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Exact Pareto Optimal solutions for preference based Multi-Objective Optimization

Debabrata Mahapatra 40 Dec 24, 2022
How Do Adam and Training Strategies Help BNNs Optimization? In ICML 2021.

AdamBNN This is the pytorch implementation of our paper "How Do Adam and Training Strategies Help BNNs Optimization?", published in ICML 2021. In this

Zechun Liu 47 Sep 20, 2022
The official implementation of You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient.

You Only Compress Once: Towards Effective and Elastic BERT Compression via Exploit-Explore Stochastic Nature Gradient (paper) @misc{zhang2021compress,

46 Dec 07, 2022
190 Jan 03, 2023
PyBrain - Another Python Machine Learning Library.

PyBrain -- the Python Machine Learning Library =============================================== INSTALLATION ------------ Quick answer: make sure you

2.8k Dec 31, 2022
Code to train models from "Paraphrastic Representations at Scale".

Paraphrastic Representations at Scale Code to train models from "Paraphrastic Representations at Scale". The code is written in Python 3.7 and require

John Wieting 71 Dec 19, 2022
A very tiny, very simple, and very secure file encryption tool.

Picocrypt is a very tiny (hence "Pico"), very simple, yet very secure file encryption tool. It uses the modern ChaCha20-Poly1305 cipher suite as well

Evan Su 1k Dec 30, 2022
BlueFog Tutorials

BlueFog Tutorials Welcome to the BlueFog tutorials! In this repository, we've put together a collection of awesome Jupyter notebooks. These notebooks

4 Oct 27, 2021
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022
Code release for NeX: Real-time View Synthesis with Neural Basis Expansion

NeX: Real-time View Synthesis with Neural Basis Expansion Project Page | Video | Paper | COLAB | Shiny Dataset We present NeX, a new approach to novel

538 Jan 09, 2023
Hand Gesture Volume Control is AIML based project which uses image processing to control the volume of your Computer.

Hand Gesture Volume Control Modules There are basically three modules Handtracking Program Handtracking Module Volume Control Program Handtracking Pro

VITTAL 1 Jan 12, 2022
Expert Finding in Legal Community Question Answering

Expert Finding in Legal Community Question Answering Arian Askari, Suzan Verberne, and Gabriella Pasi. Expert Finding in Legal Community Question Answ

Arian Askari 3 Oct 31, 2022
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
TabNet for fastai

TabNet for fastai This is an adaptation of TabNet (Attention-based network for tabular data) for fastai (=2.0) library. The original paper https://ar

Mikhail Grankin 116 Oct 21, 2022
Spatial Contrastive Learning for Few-Shot Classification (SCL)

This repo contains the official implementation of Spatial Contrastive Learning for Few-Shot Classification (SCL), which presents of a novel contrastive learning method applied to few-shot image class

Yassine 34 Dec 25, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022