How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach

Overview

EV-charging-impact

This repository contains the code that has been used for the Queue modelling for the paper "How will electric vehicles affect traffic congestion and energy consumption: an integrated modelling approach" by Artur Grigorev, Tuo Mao, Adam Berry, Joachim Tan, Loki Purushothaman, Adriana-Simona Mihaita. The paper has been published and presented during the IEEE ITSC 2021 conference. The preprint is available: https://arxiv.org/abs/2110.14064 .

You can find a working queue model in "queue_model.py" file.

This EV charging station queue simulation program reads file "Northern_Sydney_EV_charger_list.csv" and outputs queue simulation results into file "q2080_2016_seq.csv". It relies on multiprocessing package to perform parallel simulation.

Input parameters of the model:

  1. Duration of modeling (day, week, month)
  2. Number of plugs on EV stations
  3. Distribution of time intervals between arrivals
  4. Distribution of charging time: normaly distributed between 20% and 80%.
  5. Max queue size
  6. Power supply at EV charger: KW/h

Model output:

  • (O1) Mean queue length of an EV station [n]'] = HOURQUEUE[i]
  • (O2) Mean waiting time in queue at an EV station [hours]
  • (O3) Mean service time to charge at an EV station [hours]
  • (O4) Total time spent overall at an EV station [hours]
  • (O5) Total energy consumption of an EV station [kWh]
  • (O6) Maximum recorded queue length of an EV station [n]
  • (O7) Maximum waiting time in queue at an EV station [hours]
  • (O8) Maximum time spent overall at an EV station [hours]
  • (O9) Maximal energy consumption of an EV station [kW]
  • Consumed electricity by hour [kWh]
  • Total waiting time (minutes) by hour
  • Overall Mean Service time/day'

queue model

To perform calculations for specific OD traffic flow (2016, OD15, OD30) change the line: DICT['StationFlow'] = float(dt[dt.Name==N]['2016 volume']) at the "Setup" section (to 2016, 15 or 30).

The structure of the framework: framework

The code to produce lineplots is in "lineplots.ipynb":

lineplot

lineplot2

The code to produce supplementary animation is in "anim.ipynb": anim

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021)

Reducing Information Bottleneck for Weakly Supervised Semantic Segmentation (NeurIPS 2021) The implementation of Reducing Infromation Bottleneck for W

Jungbeom Lee 81 Dec 16, 2022
Pytorch Implementation of Interaction Networks for Learning about Objects, Relations and Physics

Interaction-Network-Pytorch Pytorch Implementraion of Interaction Networks for Learning about Objects, Relations and Physics. Interaction Network is a

117 Nov 05, 2022
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
Snscrape-jsonl-urls-extractor - Extracts urls from jsonl produced by snscrape

snscrape-jsonl-urls-extractor extracts urls from jsonl produced by snscrape Usag

1 Feb 26, 2022
Multiple style transfer via variational autoencoder

ST-VAE Multiple style transfer via variational autoencoder By Zhi-Song Liu, Vicky Kalogeiton and Marie-Paule Cani This repo only provides simple testi

13 Oct 29, 2022
Open source code for the paper of Neural Sparse Voxel Fields.

Neural Sparse Voxel Fields (NSVF) Project Page | Video | Paper | Data Photo-realistic free-viewpoint rendering of real-world scenes using classical co

Meta Research 647 Dec 27, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
An index of recommendation algorithms that are based on Graph Neural Networks.

An index of recommendation algorithms that are based on Graph Neural Networks.

FIB LAB, Tsinghua University 564 Jan 07, 2023
Embeds a story into a music playlist by sorting the playlist so that the order of the music follows a narrative arc.

playlist-story-builder This project attempts to embed a story into a music playlist by sorting the playlist so that the order of the music follows a n

Dylan R. Ashley 0 Oct 28, 2021
Dynamic View Synthesis from Dynamic Monocular Video

Dynamic View Synthesis from Dynamic Monocular Video Project Website | Video | Paper Dynamic View Synthesis from Dynamic Monocular Video Chen Gao, Ayus

Chen Gao 139 Dec 28, 2022
Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Tensorflow2 Keras-based Semantic Segmentation Models Implementation

Hah Min Lew 1 Feb 08, 2022
[NeurIPS-2021] Slow Learning and Fast Inference: Efficient Graph Similarity Computation via Knowledge Distillation

Efficient Graph Similarity Computation - (EGSC) This repo contains the source code and dataset for our paper: Slow Learning and Fast Inference: Effici

24 Dec 31, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based Analysis Framework"

Privacy-Aware Inverse RL (PRIL) Analysis Framework Code, environments, and scripts for the paper: "How Private Is Your RL Policy? An Inverse RL Based

1 Dec 06, 2021
Semi-Autoregressive Transformer for Image Captioning

Semi-Autoregressive Transformer for Image Captioning Requirements Python 3.6 Pytorch 1.6 Prepare data Please use git clone --recurse-submodules to clo

YE Zhou 23 Dec 09, 2022
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
Official PyTorch implementation of SyntaSpeech (IJCAI 2022)

SyntaSpeech: Syntax-Aware Generative Adversarial Text-to-Speech | | | | 中文文档 This repository is the official PyTorch implementation of our IJCAI-2022

Zhenhui YE 116 Nov 24, 2022
Pytorch implementation for reproducing StackGAN_v2 results in the paper StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN-v2 StackGAN-v1: Tensorflow implementation StackGAN-v1: Pytorch implementation Inception score evaluation Pytorch implementation for reproduci

Han Zhang 809 Dec 16, 2022
nnFormer: Interleaved Transformer for Volumetric Segmentation

nnFormer: Interleaved Transformer for Volumetric Segmentation Code for paper "nnFormer: Interleaved Transformer for Volumetric Segmentation ". Please

jsguo 610 Dec 28, 2022
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023