The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

Overview

NTIRE 2022 - Image Inpainting Challenge

Important dates

  • 2022.02.01: Release of train data (input and output images) and validation data (only input)
  • 2022.02.01: Validation server online
  • 2022.03.13: Final test data release (only input images)
  • 2022.03.20: Test output results submission deadline
  • 2022.03.20: Fact sheets and code/executable submission deadline
  • 2022.03.22: Preliminary test results release to the participants
  • 2022.04.01: Paper submission deadline for entries from the challenge
  • 2022.06.19: Workshop day

Description

The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

Image manipulation is a key computer vision task, aiming at the restoration of degraded image content, the filling in of missing information, or the needed transformation and/or manipulation to achieve the desired target (with respect to perceptual quality, contents, or performance of apps working on such images). Recent years have witnessed an increased interest from the vision and graphics communities in these fundamental topics of research. Not only has there been a constantly growing flow of related papers, but also substantial progress has been achieved.

Recently, there has been a substantial increase in the number of published papers that directly or indirectly address Image Inpainting. Due to a lack of a standardized framework, it is difficult for a new method to perform a comprehensive and fair comparison with respect to existing solutions. This workshop aims to provide an overview of the new trends and advances in those areas. Moreover, it will offer an opportunity for academic and industrial attendees to interact and explore collaborations.

Jointly with the NTIRE workshop, we have an NTIRE challenge on Image Inpainting, that is, the task of predicting the values of missing pixels in an image so that the completed result looks realistic and coherent. This challenge has 3 main objectives:

  1. Direct comparison of recent state-of-the-art Image Inpainting solutions, which will be considered as baselines. See baselines.
  2. To perform a comprehensive analysis on the different types of masks, for instance, strokes, half completion, nearest neighbor upsampling, etc. Thus, highlighting the pros and cons of each method for each type of mask. See Type of masks.
  3. To set a public benchmark on 4 different datasets (FFHQ, Places, ImageNet, and WikiArt) for direct and easy comparison. See data.

This challenge has 2 tracks:

Main Goal

The aim is to obtain a mask agnostic network design/solution capable of producing high-quality results with the best perceptual quality with respect to the ground truth.

Type of Masks

In addition to the typical strokes, with this challenge, we aim at more generalizable solutions.

Thick Strokes Medium Strokes Thin Strokes
Every_N_Lines Completion Expand
Nearest_Neighbor

Data

Following a common practice in Image Inpainting methods, we use three popular datasets for our challenge: FFHQ, Places, and ImageNet. Additionally, to explore a new benchmark, we also use the WikiArt dataset to tackle inpainting towards art creation. See the data for more info about downloading the datasets.

Competition

The top-ranked participants will be awarded and invited to follow the CVPR submission guide for workshops to describe their solutions and to submit to the associated NTIRE workshop at CVPR 2022.

Evaluation

See Evaluation.

Provided Resources

  • Scripts: With the dataset, the organizers will provide scripts to facilitate the reproducibility of the images and performance evaluation results after the validation server is online. More information is provided on the data page.
  • Contact: You can use the forum on the data description page (Track1 and Track 2 - highly recommended!) or directly contact the challenge organizers by email (me [at] afromero.co, a.castillo13 [at] uniandes.edu.co, and Radu.Timofte [at] vision.ee.ethz.ch) if you have doubts or any question.

Issues and questions:

In case of any questions about the challenge or the toolkit, feel free to open an issue on Github.

Organizers

Terms and conditions

The terms and conditions for participating in the challenge are provided here

Shout-outs

Thanks to everyone who makes their code and models available. In particular,

Owner
Andrés Romero
Postdoctoral Researcher
Andrés Romero
Fake-user-agent-traffic-geneator - Python CLI Tool to generate fake traffic against URLs with configurable user-agents

Fake traffic generator for Gartner Demo Generate fake traffic to URLs with custo

New Relic Experimental 3 Oct 31, 2022
Implementation for Panoptic-PolarNet (CVPR 2021)

Panoptic-PolarNet This is the official implementation of Panoptic-PolarNet. [ArXiv paper] Introduction Panoptic-PolarNet is a fast and robust LiDAR po

Zixiang Zhou 126 Jan 01, 2023
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
TensorFlow (Python) implementation of DeepTCN model for multivariate time series forecasting.

DeepTCN TensorFlow TensorFlow (Python) implementation of multivariate time series forecasting model introduced in Chen, Y., Kang, Y., Chen, Y., & Wang

Flavia Giammarino 21 Dec 19, 2022
Code for the paper "Improved Techniques for Training GANs"

Status: Archive (code is provided as-is, no updates expected) improved-gan code for the paper "Improved Techniques for Training GANs" MNIST, SVHN, CIF

OpenAI 2.2k Jan 01, 2023
Development kit for MIT Scene Parsing Benchmark

Development Kit for MIT Scene Parsing Benchmark [NEW!] Our PyTorch implementation is released in the following repository: https://github.com/hangzhao

MIT CSAIL Computer Vision 424 Dec 01, 2022
Canonical Appearance Transformations

CAT-Net: Learning Canonical Appearance Transformations Code to accompany our paper "How to Train a CAT: Learning Canonical Appearance Transformations

STARS Laboratory 54 Dec 24, 2022
网络协议2天集训

网络协议2天集训 抓包工具安装 Wireshark wireshark下载地址 Tcpdump CentOS yum install tcpdump -y Ubuntu apt-get install tcpdump -y k8s抓包测试环境 查看虚拟网卡veth pair 查看

120 Dec 12, 2022
Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness through a Teacher-guided curriculum Learning Approach

Get Fooled for the Right Reason Official repository for the NeurIPS 2021 paper Get Fooled for the Right Reason: Improving Adversarial Robustness throu

Sowrya Gali 1 Apr 25, 2022
使用yolov5训练自己数据集(详细过程)并通过flask部署

使用yolov5训练自己的数据集(详细过程)并通过flask部署 依赖库 torch torchvision numpy opencv-python lxml tqdm flask pillow tensorboard matplotlib pycocotools Windows,请使用 pycoc

HB.com 19 Dec 28, 2022
Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Spiking Neural Network for Computer Vision using SpikingJelly framework and Pytorch-Lightning

Sami BARCHID 2 Oct 20, 2022
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
Official implementation of our paper "LLA: Loss-aware Label Assignment for Dense Pedestrian Detection" in Pytorch.

LLA: Loss-aware Label Assignment for Dense Pedestrian Detection This project provides an implementation for "LLA: Loss-aware Label Assignment for Dens

35 Dec 06, 2022
AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation

AirPose AirPose: Multi-View Fusion Network for Aerial 3D Human Pose and Shape Estimation Check the teaser video This repository contains the code of A

Robot Perception Group 41 Dec 05, 2022
Get started learning C# with C# notebooks powered by .NET Interactive and VS Code.

.NET Interactive Notebooks for C# Welcome to the home of .NET interactive notebooks for C#! How to Install Download the .NET Coding Pack for VS Code f

.NET Platform 425 Dec 25, 2022
商品推荐系统

商品top50推荐系统 问题建模 本项目的数据集给出了15万左右的用户以及12万左右的商品, 以及对应的经过脱敏处理的用户特征和经过预处理的商品特征,旨在为用户推荐50个其可能购买的商品。 推荐系统架构方案 本项目采用传统的召回+排序的方案。

107 Dec 29, 2022
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

MARL @ SJTU 348 Jan 08, 2023
HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow

Class HiddenMarkovModel HiddenMarkovModel implements hidden Markov models with Gaussian mixtures as distributions on top of TensorFlow 2.0 Installatio

Susara Thenuwara 2 Nov 03, 2021
MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets)

MixRNet(Using mixup as regularization and tuning hyper-parameters for ResNets) Using mixup data augmentation as reguliraztion and tuning the hyper par

Bhanu 2 Jan 16, 2022