The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

Overview

NTIRE 2022 - Image Inpainting Challenge

Important dates

  • 2022.02.01: Release of train data (input and output images) and validation data (only input)
  • 2022.02.01: Validation server online
  • 2022.03.13: Final test data release (only input images)
  • 2022.03.20: Test output results submission deadline
  • 2022.03.20: Fact sheets and code/executable submission deadline
  • 2022.03.22: Preliminary test results release to the participants
  • 2022.04.01: Paper submission deadline for entries from the challenge
  • 2022.06.19: Workshop day

Description

The 7th edition of NTIRE: New Trends in Image Restoration and Enhancement workshop will be held on June 2022 in conjunction with CVPR 2022.

Image manipulation is a key computer vision task, aiming at the restoration of degraded image content, the filling in of missing information, or the needed transformation and/or manipulation to achieve the desired target (with respect to perceptual quality, contents, or performance of apps working on such images). Recent years have witnessed an increased interest from the vision and graphics communities in these fundamental topics of research. Not only has there been a constantly growing flow of related papers, but also substantial progress has been achieved.

Recently, there has been a substantial increase in the number of published papers that directly or indirectly address Image Inpainting. Due to a lack of a standardized framework, it is difficult for a new method to perform a comprehensive and fair comparison with respect to existing solutions. This workshop aims to provide an overview of the new trends and advances in those areas. Moreover, it will offer an opportunity for academic and industrial attendees to interact and explore collaborations.

Jointly with the NTIRE workshop, we have an NTIRE challenge on Image Inpainting, that is, the task of predicting the values of missing pixels in an image so that the completed result looks realistic and coherent. This challenge has 3 main objectives:

  1. Direct comparison of recent state-of-the-art Image Inpainting solutions, which will be considered as baselines. See baselines.
  2. To perform a comprehensive analysis on the different types of masks, for instance, strokes, half completion, nearest neighbor upsampling, etc. Thus, highlighting the pros and cons of each method for each type of mask. See Type of masks.
  3. To set a public benchmark on 4 different datasets (FFHQ, Places, ImageNet, and WikiArt) for direct and easy comparison. See data.

This challenge has 2 tracks:

Main Goal

The aim is to obtain a mask agnostic network design/solution capable of producing high-quality results with the best perceptual quality with respect to the ground truth.

Type of Masks

In addition to the typical strokes, with this challenge, we aim at more generalizable solutions.

Thick Strokes Medium Strokes Thin Strokes
Every_N_Lines Completion Expand
Nearest_Neighbor

Data

Following a common practice in Image Inpainting methods, we use three popular datasets for our challenge: FFHQ, Places, and ImageNet. Additionally, to explore a new benchmark, we also use the WikiArt dataset to tackle inpainting towards art creation. See the data for more info about downloading the datasets.

Competition

The top-ranked participants will be awarded and invited to follow the CVPR submission guide for workshops to describe their solutions and to submit to the associated NTIRE workshop at CVPR 2022.

Evaluation

See Evaluation.

Provided Resources

  • Scripts: With the dataset, the organizers will provide scripts to facilitate the reproducibility of the images and performance evaluation results after the validation server is online. More information is provided on the data page.
  • Contact: You can use the forum on the data description page (Track1 and Track 2 - highly recommended!) or directly contact the challenge organizers by email (me [at] afromero.co, a.castillo13 [at] uniandes.edu.co, and Radu.Timofte [at] vision.ee.ethz.ch) if you have doubts or any question.

Issues and questions:

In case of any questions about the challenge or the toolkit, feel free to open an issue on Github.

Organizers

Terms and conditions

The terms and conditions for participating in the challenge are provided here

Shout-outs

Thanks to everyone who makes their code and models available. In particular,

Owner
Andrés Romero
Postdoctoral Researcher
Andrés Romero
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
Intrinsic Image Harmonization

Intrinsic Image Harmonization [Paper] Zonghui Guo, Haiyong Zheng, Yufeng Jiang, Zhaorui Gu, Bing Zheng Here we provide PyTorch implementation and the

VISION @ OUC 44 Dec 21, 2022
Official implementation for “Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior”

HEP Unsupervised Low-Light Image Enhancement via Histogram Equalization Prior Implementation Python3 PyTorch=1.0 NVIDIA GPU+CUDA Training process The

FengZhang 34 Dec 04, 2022
Visual dialog agents with pre-trained vision-and-language encoders.

Learning Better Visual Dialog Agents with Pretrained Visual-Linguistic Representation Or READ-UP: Referring Expression Agent Dialog with Unified Pretr

7 Oct 08, 2022
PyTorch implementation for ComboGAN

ComboGAN This is our ongoing PyTorch implementation for ComboGAN. Code was written by Asha Anoosheh (built upon CycleGAN) [ComboGAN Paper] If you use

Asha Anoosheh 139 Dec 20, 2022
PyTorch code for MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning

MART: Memory-Augmented Recurrent Transformer for Coherent Video Paragraph Captioning PyTorch code for our ACL 2020 paper "MART: Memory-Augmented Recur

Jie Lei 雷杰 151 Jan 06, 2023
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
这是一个yolox-pytorch的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Pytorch当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤

Bubbliiiing 613 Jan 05, 2023
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
PyTorch implementation of ECCV 2020 paper "Foley Music: Learning to Generate Music from Videos "

Foley Music: Learning to Generate Music from Videos This repo holds the code for the framework presented on ECCV 2020. Foley Music: Learning to Genera

Chuang Gan 30 Nov 03, 2022
Fully Convolutional Refined Auto Encoding Generative Adversarial Networks for 3D Multi Object Scenes

Fully Convolutional Refined Auto-Encoding Generative Adversarial Networks for 3D Multi Object Scenes This repository contains the source code for Full

Yu Nishimura 106 Nov 21, 2022
Efficient Lottery Ticket Finding: Less Data is More

The lottery ticket hypothesis (LTH) reveals the existence of winning tickets (sparse but critical subnetworks) for dense networks, that can be trained in isolation from random initialization to match

VITA 20 Sep 04, 2022
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which reaches a median HNS of 205.7 after only 10M frames (the original Rainbow from Hessel et al. 2017 re

Dominik Schmidt 31 Dec 21, 2022
The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network.

UNet-SIDE The undersampled DWI image using Slice-Interleaved Diffusion Encoding (SIDE) method can be reconstructed by the UNet network. For Super Reso

TIANTIAN XU 1 Jan 13, 2022
A hyperparameter optimization framework

Optuna: A hyperparameter optimization framework Website | Docs | Install Guide | Tutorial Optuna is an automatic hyperparameter optimization software

7.4k Jan 04, 2023
Perform Linear Classification with Multi-way Data

MultiwayClassification This is an R package to perform linear classification for data with multi-way structure. The distance-weighted discrimination (

Eric F. Lock 2 Dec 15, 2020
GT China coal model

GT China coal model The full version of a China coal transport model with a very high spatial reslution. What it does The code works in a few steps: T

0 Dec 13, 2021
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022