GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond

Overview

GCNet for Object Detection

PWC PWC PWC PWC

By Yue Cao, Jiarui Xu, Stephen Lin, Fangyun Wei, Han Hu.

This repo is a official implementation of "GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond" on COCO object detection based on open-mmlab's mmdetection. The core operator GC block could be find here. Many thanks to mmdetection for their simple and clean framework.

Update on 2020/12/07

The extension of GCNet got accepted by TPAMI (PDF).

Update on 2019/10/28

GCNet won the Best Paper Award at ICCV 2019 Neural Architects Workshop!

Update on 2019/07/01

The code is refactored. More results are provided and all configs could be found in configs/gcnet.

Notes: Both PyTorch official SyncBN and Apex SyncBN have some stability issues. During training, mAP may drops to zero and back to normal during last few epochs.

Update on 2019/06/03

GCNet is supported by the official mmdetection repo here. Thanks again for open-mmlab's work on open source projects.

Introduction

GCNet is initially described in arxiv. Via absorbing advantages of Non-Local Networks (NLNet) and Squeeze-Excitation Networks (SENet), GCNet provides a simple, fast and effective approach for global context modeling, which generally outperforms both NLNet and SENet on major benchmarks for various recognition tasks.

Citing GCNet

@article{cao2019GCNet,
  title={GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond},
  author={Cao, Yue and Xu, Jiarui and Lin, Stephen and Wei, Fangyun and Hu, Han},
  journal={arXiv preprint arXiv:1904.11492},
  year={2019}
}

Main Results

Results on R50-FPN with backbone (fixBN)

Back-bone Model Back-bone Norm Heads Context Lr schd Mem (GB) Train time (s/iter) Inf time (fps) box AP mask AP Download
R50-FPN Mask fixBN 2fc (w/o BN) - 1x 3.9 0.453 10.6 37.3 34.2 model
R50-FPN Mask fixBN 2fc (w/o BN) GC(c3-c5, r16) 1x 4.5 0.533 10.1 38.5 35.1 model
R50-FPN Mask fixBN 2fc (w/o BN) GC(c3-c5, r4) 1x 4.6 0.533 9.9 38.9 35.5 model
R50-FPN Mask fixBN 2fc (w/o BN) - 2x - - - 38.2 34.9 model
R50-FPN Mask fixBN 2fc (w/o BN) GC(c3-c5, r16) 2x - - - 39.7 36.1 model
R50-FPN Mask fixBN 2fc (w/o BN) GC(c3-c5, r4) 2x - - - 40.0 36.2 model

Results on R50-FPN with backbone (syncBN)

Back-bone Model Back-bone Norm Heads Context Lr schd Mem (GB) Train time (s/iter) Inf time (fps) box AP mask AP Download
R50-FPN Mask SyncBN 2fc (w/o BN) - 1x 3.9 0.543 10.2 37.2 33.8 model
R50-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r16) 1x 4.5 0.547 9.9 39.4 35.7 model
R50-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r4) 1x 4.6 0.603 9.4 39.9 36.2 model
R50-FPN Mask SyncBN 2fc (w/o BN) - 2x 3.9 0.543 10.2 37.7 34.3 model
R50-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r16) 2x 4.5 0.547 9.9 39.7 36.0 model
R50-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r4) 2x 4.6 0.603 9.4 40.2 36.3 model
R50-FPN Mask SyncBN 4conv1fc (SyncBN) - 1x - - - 38.8 34.6 model
R50-FPN Mask SyncBN 4conv1fc (SyncBN) GC(c3-c5, r16) 1x - - - 41.0 36.5 model
R50-FPN Mask SyncBN 4conv1fc (SyncBN) GC(c3-c5, r4) 1x - - - 41.4 37.0 model

Results on stronger backbones

Back-bone Model Back-bone Norm Heads Context Lr schd Mem (GB) Train time (s/iter) Inf time (fps) box AP mask AP Download
R101-FPN Mask fixBN 2fc (w/o BN) - 1x 5.8 0.571 9.5 39.4 35.9 model
R101-FPN Mask fixBN 2fc (w/o BN) GC(c3-c5, r16) 1x 7.0 0.731 8.6 40.8 37.0 model
R101-FPN Mask fixBN 2fc (w/o BN) GC(c3-c5, r4) 1x 7.1 0.747 8.6 40.8 36.9 model
R101-FPN Mask SyncBN 2fc (w/o BN) - 1x 5.8 0.665 9.2 39.8 36.0 model
R101-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r16) 1x 7.0 0.778 9.0 41.1 37.4 model
R101-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r4) 1x 7.1 0.786 8.9 41.7 37.6 model
X101-FPN Mask SyncBN 2fc (w/o BN) - 1x 7.1 0.912 8.5 41.2 37.3 model
X101-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r16) 1x 8.2 1.055 7.7 42.4 38.0 model
X101-FPN Mask SyncBN 2fc (w/o BN) GC(c3-c5, r4) 1x 8.3 1.037 7.6 42.9 38.5 model
X101-FPN Cascade Mask SyncBN 2fc (w/o BN) - 1x - - - 44.7 38.3 model
X101-FPN Cascade Mask SyncBN 2fc (w/o BN) GC(c3-c5, r16) 1x - - - 45.9 39.3 model
X101-FPN Cascade Mask SyncBN 2fc (w/o BN) GC(c3-c5, r4) 1x - - - 46.5 39.7 model
X101-FPN DCN Cascade Mask SyncBN 2fc (w/o BN) - 1x - - - 47.1 40.4 model
X101-FPN DCN Cascade Mask SyncBN 2fc (w/o BN) GC(c3-c5, r16) 1x - - - 47.9 40.9 model
X101-FPN DCN Cascade Mask SyncBN 2fc (w/o BN) GC(c3-c5, r4) 1x - - - 47.9 40.8 model

Notes

  • GC denotes Global Context (GC) block is inserted after 1x1 conv of backbone.
  • DCN denotes replace 3x3 conv with 3x3 Deformable Convolution in c3-c5 stages of backbone.
  • r4 and r16 denote ratio 4 and ratio 16 in GC block respectively.
  • Some of models are trained on 4 GPUs with 4 images on each GPU.

Requirements

  • Linux(tested on Ubuntu 16.04)
  • Python 3.6+
  • PyTorch 1.1.0
  • Cython
  • apex (Sync BN)

Install

a. Install PyTorch 1.1 and torchvision following the official instructions.

b. Install latest apex with CUDA and C++ extensions following this instructions. The Sync BN implemented by apex is required.

c. Clone the GCNet repository.

 git clone https://github.com/xvjiarui/GCNet.git 

d. Compile cuda extensions.

cd GCNet
pip install cython  # or "conda install cython" if you prefer conda
./compile.sh  # or "PYTHON=python3 ./compile.sh" if you use system python3 without virtual environments

e. Install GCNet version mmdetection (other dependencies will be installed automatically).

python(3) setup.py install  # add --user if you want to install it locally
# or "pip install ."

Note: You need to run the last step each time you pull updates from github. Or you can run python(3) setup.py develop or pip install -e . to install mmdetection if you want to make modifications to it frequently.

Please refer to mmdetection install instruction for more details.

Environment

Hardware

  • 8 NVIDIA Tesla V100 GPUs
  • Intel Xeon 4114 CPU @ 2.20GHz

Software environment

  • Python 3.6.7
  • PyTorch 1.1.0
  • CUDA 9.0
  • CUDNN 7.0
  • NCCL 2.3.5

Usage

Train

As in original mmdetection, distributed training is recommended for either single machine or multiple machines.

./tools/dist_train.sh <CONFIG_FILE> <GPU_NUM> [optional arguments]

Supported arguments are:

  • --validate: perform evaluation every k (default=1) epochs during the training.
  • --work_dir <WORK_DIR>: if specified, the path in config file will be replaced.

Evaluation

To evaluate trained models, output file is required.

python tools/test.py <CONFIG_FILE> <MODEL_PATH> [optional arguments]

Supported arguments are:

  • --gpus: number of GPU used for evaluation
  • --out: output file name, usually ends wiht .pkl
  • --eval: type of evaluation need, for mask-rcnn, bbox segm would evaluate both bounding box and mask AP.
Owner
Jerry Jiarui XU
Part of the journey is the end
Jerry Jiarui XU
ULMFiT for Genomic Sequence Data

Genomic ULMFiT This is an implementation of ULMFiT for genomics classification using Pytorch and Fastai. The model architecture used is based on the A

Karl 276 Dec 12, 2022
HyperDict - Self linked dictionary in Python

Hyper Dictionary Advanced python dictionary(hash-table), which can link it-self

8 Feb 06, 2022
PN-Net a neural field-based framework for depth estimation from single-view RGB images.

PN-Net We present a neural field-based framework for depth estimation from single-view RGB images. Rather than representing a 2D depth map as a single

1 Oct 02, 2021
InvTorch: memory-efficient models with invertible functions

InvTorch: Memory-Efficient Invertible Functions This module extends the functionality of torch.utils.checkpoint.checkpoint to work with invertible fun

Modar M. Alfadly 12 May 12, 2022
FG-transformer-TTS Fine-grained style control in transformer-based text-to-speech synthesis

LST-TTS Official implementation for the paper Fine-grained style control in transformer-based text-to-speech synthesis. Submitted to ICASSP 2022. Audi

Li-Wei Chen 64 Dec 30, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python

deepface Deepface is a lightweight face recognition and facial attribute analysis (age, gender, emotion and race) framework for python. It is a hybrid

Kushal Shingote 2 Feb 10, 2022
A Simple and Versatile Framework for Object Detection and Instance Recognition

SimpleDet - A Simple and Versatile Framework for Object Detection and Instance Recognition Major Features FP16 training for memory saving and up to 2.

TuSimple 3k Dec 12, 2022
Official Pytorch implementation of 6DRepNet: 6D Rotation representation for unconstrained head pose estimation.

6D Rotation Representation for Unconstrained Head Pose Estimation (Pytorch) Paper Thorsten Hempel and Ahmed A. Abdelrahman and Ayoub Al-Hamadi, "6D Ro

Thorsten Hempel 284 Dec 23, 2022
Implementation of "Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis"

Generalizable Neural Performer: Learning Robust Radiance Fields for Human Novel View Synthesis Abstract: This work targets at using a general deep lea

163 Dec 14, 2022
Deep Learning to Improve Breast Cancer Detection on Screening Mammography

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Deep Learning to Improve Breast

Li Shen 305 Jan 03, 2023
Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation'

OD-Rec Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation' Paper, saved teacher models and Andro

Xin Xia 11 Nov 22, 2022
Command-line tool for downloading and extending the RedCaps dataset.

RedCaps Downloader This repository provides the official command-line tool for downloading and extending the RedCaps dataset. Users can seamlessly dow

RedCaps dataset 33 Dec 14, 2022
Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

Point Cloud Denoising input segmentation output raw point-cloud valid/clear fog rain de-noised Abstract Lidar sensors are frequently used in environme

75 Nov 24, 2022
Implementation of Vaswani, Ashish, et al. "Attention is all you need."

Attention Is All You Need Paper Implementation This is my from-scratch implementation of the original transformer architecture from the following pape

Brando Koch 195 Dec 30, 2022
Python-kafka-reset-consumergroup-offset-example - Python Kafka reset consumergroup offset example

Python Kafka reset consumergroup offset example This is a simple example of how

Willi Carlsen 1 Feb 16, 2022
Face and other object detection using OpenCV and ML Yolo

Object-and-Face-Detection-Using-Yolo- Opencv and YOLO object and face detection is implemented. You only look once (YOLO) is a state-of-the-art, real-

Happy N. Monday 3 Feb 15, 2022
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
PyTorch implemention of ICCV'21 paper SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation

SGPA: Structure-Guided Prior Adaptation for Category-Level 6D Object Pose Estimation This is the PyTorch implemention of ICCV'21 paper SGPA: Structure

Chen Kai 24 Dec 05, 2022
Unofficial & improved implementation of NeRF--: Neural Radiance Fields Without Known Camera Parameters

[Unofficial code-base] NeRF--: Neural Radiance Fields Without Known Camera Parameters [ Project | Paper | Official code base ] ⬅️ Thanks the original

Jianfei Guo 239 Dec 22, 2022