TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

Related tags

Deep LearningTransFGU
Overview

TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation

Zhaoyun Yin, Pichao Wang, Fan Wang, Xianzhe Xu, Hanling Zhang, Hao Li, Rong Jin

[Preprint]

Getting Started

Create the environment

# create conda env
conda create -n TransFGU python=3.8
# activate conda env
conda activate TransFGU
# install pytorch
conda install pytorch=1.8 torchvision cudatoolkit=10.1
# install other dependencies
pip install mmcv-full -f https://download.openmmlab.com/mmcv/dist/cu101/torch1.8.0/index.html
pip install -r requirements.txt

Dataset Preparation

the structure of dataset folders should be as follow:

data/
    │── MSCOCO/
    │     ├── images/
    │     │     ├── train2017/
    │     │     └── val2017/
    │     └── annotations/
    │           ├── train2017/
    │           ├── val2017/
    │           ├── instances_train2017.json
    │           └── instances_val2017.json
    │── Cityscapes/
    │     ├── leftImg8bit/
    │     │     ├── train/
    │     │     │       ├── aachen
    │     │     │       └── ...
    │     │     └──── val/
    │     │             ├── frankfurt
    │     │             └── ...
    │     └── gtFine/
    │           ├── train/
    │           │       ├── aachen
    │           │       └── ...
    │           └──── val/
    │                   ├── frankfurt
    │                   └── ...
    │── PascalVOC/
    │     ├── JPEGImages/
    │     ├── SegmentationClass/
    │     └── ImageSets/
    │           └── Segmentation/
    │                   ├── train.txt
    │                   └── val.txt
    └── LIP/
          ├── train_images/
          ├── train_segmentations/
          ├── val_images/
          ├── val_segmentations/
          ├── train_id.txt
          └── val_id.txt

Model download

Name mIoU Pixel Accuracy Model
COCOStuff-27 16.19 44.52 Google Drive
COCOStuff-171 11.93 34.32 Google Drive
COCO-80 12.69 64.31 Google Drive
Cityscapes 16.83 77.92 Google Drive
Pascal-VOC 37.15 83.59 Google Drive
LIP-5 25.16 65.76 Google Drive
LIP-16 15.49 60.08 Google Drive
LIP-19 12.24 42.52 Google Drive

Train and Evaluate Our Method

To train and evaluate our method on different datasets under desired granularity level, please follow the instructions here.

Citation

If you find our work useful in your research, please consider citing:

@article{yin2021transfgu,
  title={TransFGU: A Top-down Approach to Fine-Grained Unsupervised Semantic Segmentation},
  author={Zhaoyun, Yin and Pichao, Wang and Fan, Wang and Xianzhe, Xu and Hanling, Zhang and Hao, Li and Rong, Jin},
  journal={arXiv preprint arXiv:2112.01515},
  year={2021}
}

LICENSE

The code is released under the MIT license.

Copyright

Copyright (C) 2010-2021 Alibaba Group Holding Limited.

Owner
DamoCV
CV team of DAMO academy
DamoCV
This is the repository for Learning to Generate Piano Music With Sustain Pedals

SusPedal-Gen This is the official repository of Learning to Generate Piano Music With Sustain Pedals Demo Page Dataset The dataset used in this projec

Joann Ching 12 Sep 02, 2022
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
A Deep Learning Framework for Neural Derivative Hedging

NNHedge NNHedge is a PyTorch based framework for Neural Derivative Hedging. The following repository was implemented to ease the experiments of our pa

GUIJIN SON 17 Nov 14, 2022
Deep Learning Slide Captcha

滑动验证码深度学习识别 本项目使用深度学习 YOLOV3 模型来识别滑动验证码缺口,基于 https://github.com/eriklindernoren/PyTorch-YOLOv3 修改。 只需要几百张缺口标注图片即可训练出精度高的识别模型,识别效果样例: 克隆项目 运行命令: git cl

Python3WebSpider 55 Jan 02, 2023
RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids

RMTD: Robust Moving Target Defence Against False Data Injection Attacks in Power Grids Real-time detection performance. This repo contains the code an

0 Nov 10, 2021
Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung

Vending_Machine_(Mesin_Penjual_Minuman) Project Tugas Besar pertama Pengenalan Komputasi Institut Teknologi Bandung Raw Sketch untuk Essay Ringkasan P

QueenLy 1 Nov 08, 2021
Prototype for Baby Action Detection and Classification

Baby Action Detection Table of Contents About Install Run Predictions Demo About An attempt to harness the power of Deep Learning to come up with a so

Shreyas K 30 Dec 16, 2022
The code for 'Deep Residual Fourier Transformation for Single Image Deblurring'

Deep Residual Fourier Transformation for Single Image Deblurring Xintian Mao, Yiming Liu, Wei Shen, Qingli Li and Yan Wang code will be released soon

145 Dec 13, 2022
SwinTrack: A Simple and Strong Baseline for Transformer Tracking

SwinTrack This is the official repo for SwinTrack. A Simple and Strong Baseline Prerequisites Environment conda (recommended) conda create -y -n SwinT

LitingLin 196 Jan 04, 2023
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022
Maximum Spatial Perturbation for Image-to-Image Translation (Official Implementation)

MSPC for I2I This repository is by Yanwu Xu and contains the PyTorch source code to reproduce the experiments in our CVPR2022 paper Maximum Spatial Pe

51 Dec 14, 2022
A JAX-based research framework for writing differentiable numerical simulators with arbitrary discretizations

jaxdf - JAX-based Discretization Framework Overview | Example | Installation | Documentation ⚠️ This library is still in development. Breaking changes

UCL Biomedical Ultrasound Group 65 Dec 23, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
GUI for a Vocal Remover that uses Deep Neural Networks.

GUI for a Vocal Remover that uses Deep Neural Networks.

4.4k Jan 07, 2023
Nested cross-validation is necessary to avoid biased model performance in embedded feature selection in high-dimensional data with tiny sample sizes

Pruner for nested cross-validation - Sphinx-Doc Nested cross-validation is necessary to avoid biased model performance in embedded feature selection i

1 Dec 15, 2021
VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations

VolumeGAN - 3D-aware Image Synthesis via Learning Structural and Textural Representations 3D-aware Image Synthesis via Learning Structural and Textura

GenForce: May Generative Force Be with You 116 Dec 26, 2022
Automatic caption evaluation metric based on typicality analysis.

SeMantic and linguistic UndeRstanding Fusion (SMURF) Automatic caption evaluation metric described in the paper "SMURF: SeMantic and linguistic UndeRs

Joshua Feinglass 6 Jan 09, 2022
Code and models used in "MUSS Multilingual Unsupervised Sentence Simplification by Mining Paraphrases".

Multilingual Unsupervised Sentence Simplification Code and pretrained models to reproduce experiments in "MUSS: Multilingual Unsupervised Sentence Sim

Facebook Research 81 Dec 29, 2022
Official code for "Towards An End-to-End Framework for Flow-Guided Video Inpainting" (CVPR2022)

E2FGVI (CVPR 2022) English | 简体中文 This repository contains the official implementation of the following paper: Towards An End-to-End Framework for Flo

Media Computing Group @ Nankai University 537 Jan 07, 2023
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023