Code for LIGA-Stereo Detector, ICCV'21

Overview

LIGA-Stereo

Introduction

This is the official implementation of the paper LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector, In ICCV'21, Xiaoyang Guo, Shaoshuai Shi, Xiaogang Wang and Hongsheng Li.

[project page] [paper] [code]

Framework

Overview

Installation

Requirements

All the codes are tested in the following environment:

  • Linux (tested on Ubuntu 14.04 / 16.04)
  • Python 3.7
  • PyTorch 1.6.0
  • Torchvision 0.7.0
  • CUDA 9.2 / 10.1
  • spconv (commit f22dd9)

Installation Steps

a. Clone this repository.

git clone https://github.com/xy-guo/LIGA.git

b. Install the dependent libraries as follows:

  • Install the dependent python libraries:
pip install -r requirements.txt 
  • Install the SparseConv library, we use the implementation from [spconv].
git clone https://github.com/traveller59/spconv
git reset --hard f22dd9
git submodule update --recursive
python setup.py bdist_wheel
pip install ./dist/spconv-1.2.1-cp37-cp37m-linux_x86_64.whl
git clone https://github.com/xy-guo/mmdetection_kitti
python setup.py develop

c. Install this library by running the following command:

python setup.py develop

Getting Started

The dataset configs are located within configs/stereo/dataset_configs, and the model configs are located within configs/stereo for different datasets.

Dataset Preparation

Currently we only provide the dataloader of KITTI dataset.

  • Please download the official KITTI 3D object detection dataset and organize the downloaded files as follows (the road planes are provided by OpenPCDet [road plane], which are optional for training LiDAR models):
LIGA_PATH
├── data
│   ├── kitti
│   │   │── ImageSets
│   │   │── training
│   │   │   ├──calib & velodyne & label_2 & image_2 & (optional: planes)
│   │   │── testing
│   │   │   ├──calib & velodyne & image_2
├── configs
├── liga
├── tools
  • You can also choose to link your KITTI dataset path by
YOUR_KITTI_DATA_PATH=~/data/kitti_object
ln -s $YOUR_KITTI_DATA_PATH/training/ ./data/kitti/
ln -s $YOUR_KITTI_DATA_PATH/testing/ ./data/kitti/
  • Generate the data infos by running the following command:
python -m liga.datasets.kitti.kitti_dataset create_kitti_infos
python -m liga.datasets.kitti.kitti_dataset create_gt_database_only

Training & Testing

Test and evaluate the pretrained models

  • To test with multiple GPUs:
./scripts/dist_test_ckpt.sh ${NUM_GPUS} ./configs/stereo/kitti_models/liga.yaml ./ckpt/pretrained_liga.pth

Train a model

  • Train with multiple GPUs
./scripts/dist_train.sh ${NUM_GPUS} 'exp_name' ./configs/stereo/kitti_models/liga.yaml

Pretrained Models

Google Drive

Citation

@InProceedings{Guo_2021_ICCV,
    author = {Guo, Xiaoyang and Shi, Shaoshuai and Wang, Xiaogang and Li, Hongsheng},
    title = {LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector},
    booktitle = {Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV)},
    month = {October},
    year = {2021}
}

Acknowledgements

Part of codes are migrated from OpenPCDet and DSGN.

Owner
Xiaoyang Guo
Xiaoyang Guo
'Aligned mixture of latent dynamical systems' (amLDS) for stimulus decoding probabilistic manifold alignment across animals. P. Herrero-Vidal et al. NeurIPS 2021 code.

Across-animal odor decoding by probabilistic manifold alignment (NeurIPS 2021) This repository is the official implementation of aligned mixture of la

Pedro Herrero-Vidal 3 Jul 12, 2022
Speedy Implementation of Instance-based Learning (IBL) agents in Python

A Python library to create single or multi Instance-based Learning (IBL) agents that are built based on Instance Based Learning Theory (IBLT) 1 Instal

0 Nov 18, 2021
WarpRNNT loss ported in Numba CPU/CUDA for Pytorch

RNNT loss in Pytorch - Numba JIT compiled (warprnnt_numba) Warp RNN Transducer Loss for ASR in Pytorch, ported from HawkAaron/warp-transducer and a re

Somshubra Majumdar 15 Oct 22, 2022
Automatic detection and classification of Covid severity degree in LUS (lung ultrasound) scans

Final-Project Final project in the Technion, Biomedical faculty, by Mor Ventura, Dekel Brav & Omri Magen. Subproject 1: Automatic Detection of LUS Cha

Mor Ventura 1 Dec 18, 2021
WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking

WebUAV-3M: A Benchmark Unveiling the Power of Million-Scale Deep UAV Tracking [Paper Link] Abstract In this work, we contribute a new million-scale Un

25 Jan 01, 2023
A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization

MADGRAD Optimization Method A Momentumized, Adaptive, Dual Averaged Gradient Method for Stochastic Optimization pip install madgrad Try it out! A best

Meta Research 774 Dec 31, 2022
Official and maintained implementation of the paper "OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data" [BMVC 2021].

OSS-Net: Memory Efficient High Resolution Semantic Segmentation of 3D Medical Data Christoph Reich, Tim Prangemeier, Özdemir Cetin & Heinz Koeppl | Pr

Christoph Reich 23 Sep 21, 2022
Deep Learning and Logical Reasoning from Data and Knowledge

Logic Tensor Networks (LTN) Logic Tensor Network (LTN) is a neurosymbolic framework that supports querying, learning and reasoning with both rich data

171 Dec 29, 2022
Learning Skeletal Articulations with Neural Blend Shapes

This repository provides an end-to-end library for automatic character rigging and blend shapes generation as well as a visualization tool. It is based on our work Learning Skeletal Articulations wit

Peizhuo 504 Dec 30, 2022
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
PenguinSpeciesPredictionML - Basic model to predict Penguin species based on beak size and sex.

Penguin Species Prediction (ML) 🐧 👨🏽‍💻 What? 💻 This project is a basic model using sklearn methods to predict Penguin species based on beak size

Tucker Paron 0 Jan 08, 2022
Code for the paper "A Study of Face Obfuscation in ImageNet"

A Study of Face Obfuscation in ImageNet Code for the paper: A Study of Face Obfuscation in ImageNet Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng,

35 Oct 04, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics

Dataset Cartography Code for the paper Dataset Cartography: Mapping and Diagnosing Datasets with Training Dynamics at EMNLP 2020. This repository cont

AI2 125 Dec 22, 2022
[TOG 2021] PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling.

This repository contains the official PyTorch implementation for the paper: SofGAN: A Portrait Image Generator with Dynamic Styling. We propose a SofGAN image generator to decouple the latent space o

Anpei Chen 694 Dec 23, 2022
Toolbox to analyze temporal context invariance of deep neural networks

PyTCI A toolbox that estimates the integration window of a sensory response using the "Temporal Context Invariance" paradigm (TCI). The TCI method Int

4 Oct 23, 2022
Draw like Bob Ross using the power of Neural Networks (With PyTorch)!

Draw like Bob Ross using the power of Neural Networks! (+ Pytorch) Learning Process Visualization Getting started Install dependecies Requires python3

Kendrick Tan 116 Mar 07, 2022
A compendium of useful, interesting, inspirational usage of pandas functions, each example will be an ipynb file

Pandas_by_examples A compendium of useful/interesting/inspirational usage of pandas functions, each example will be an ipynb file What is this reposit

Guangyuan(Frank) Li 32 Nov 20, 2022
Posterior predictive distributions quantify uncertainties ignored by point estimates.

Posterior predictive distributions quantify uncertainties ignored by point estimates.

DeepMind 177 Dec 06, 2022
Deep learning model for EEG artifact removal

DeepSeparator Introduction Electroencephalogram (EEG) recordings are often contaminated with artifacts. Various methods have been developed to elimina

23 Dec 21, 2022