Making self-supervised learning work on molecules by using their 3D geometry to pre-train GNNs. Implemented in DGL and Pytorch Geometric.

Overview

3D Infomax improves GNNs for Molecular Property Prediction

Video | Paper

We pre-train GNNs to understand the geometry of molecules given only their 2D molecular graph which they can use for better molecular property predictions. Below is a 3 step guide for how to use the code and how to reproduce our results. If you have questions, don't hesitate to open an issue or ask me via [email protected] or social media. I am happy to hear from you!

This repository additionally adapts different self-supervised learning methods to graphs such as "Bootstrap your own Latent", "Barlow Twins", or "VICReg".

Step 1: Setup Environment

We will set up the environment using Anaconda. Clone the current repo

git clone https://github.com/HannesStark/3DInfomax

Create a new environment with all required packages using environment.yml (this can take a while). While in the project directory run:

conda env create

Activate the environment

conda activate graphssl

Step 2: 3D Pre-train a model

Let's pre-train a GNN with 50 000 molecules and their structures from the QM9 dataset (you can also skip to Step 3 and use the pre-trained model weights provided in this repo). For other datasets see the Data section below.

python train.py --config=configs_clean/pre-train_QM9.yml

This will first create the processed data of dataset/QM9/qm9.csv with the 3D information in qm9_eV.npz. Then your model starts pre-training and all the logs are saved in the runs folder which will also contain the pre-trained model as best_checkpoint.pt that can later be loaded for fine-tuning.

You can start tensorboard and navigate to localhost:6006 in your browser to monitor the training process:

tensorboard --logdir=runs --port=6006

Explanation:

The config files in configs_clean provide additional examples and blueprints to train different models. The files always contain a model_type that should be pre-trained (2D network) and a model3d_type (3D network) where you can specify the parameters of these networks. To find out more about all the other parameters in the config file, have a look at their description by running python train.py --help.

Step 3: Fine-tune a model

During pre-training a directory is created in the runs directory that contains the pre-trained model. We provide an example of such a directory with already pre-trained weights runs/PNA_qmugs_NTXentMultiplePositives_620000_123_25-08_09-19-52 which we can fine-tune for predicting QM9's homo property as follows.

python train.py --config=configs_clean/tune_QM9_homo.yml

You can monitor the fine-tuning process on tensorboard as well and in the end the results will be printed to the console but also saved in the runs directory that was created for fine-tuning in the file evaluation_test.txt.

The model which we are fine-tuning from is specified in configs_clean/tune_QM9_homo.yml via the parameter:

pretrain_checkpoint: runs/PNA_qmugs_NTXentMultiplePositives_620000_123_25-08_09-19-52/best_checkpoint_35epochs.pt

Multiple seeds:

This is a second fine-tuning example where we predict non-quantum properties of the OGB datasets and train multiple seeds (we always use the seeds 1, 2, 3, 4, 5, 6 in our experiments):

python train.py --config=configs_clean/tune_freesolv.yml

After all runs are done, the averaged results are saved in the runs directory of each seed in the file multiple_seed_test_statistics.txt

Data

You can pre-train or fine-tune on different datasets by specifying the dataset: parameter in a .yml file such as dataset: drugs to use GEOM-Drugs.

The QM9 dataset and the OGB datasets are already provided with this repository. The QMugs and GEOM-Drugs datasets need to be downloaded and placed in the correct location.

GEOM-Drugs: Download GEOM-Drugs here ( the rdkit_folder.tar.gz file), unzip it, and place it into dataset/GEOM.

QMugs: Download QMugs here (the structures.tar and summary.csv files), unzip the structures.tar, and place the resulting structures folder and the summary.csv file into a new folder QMugs that you have to create NEXT TO the repository root. Not in the repository root (sorry for this).

Owner
Hannes Stärk
MIT Research Intern • Geometric DL + Graphs :heart: • M. Sc. Informatics from TU Munich
Hannes Stärk
A python library to build Model Trees with Linear Models at the leaves.

A python library to build Model Trees with Linear Models at the leaves.

Marco Cerliani 212 Dec 30, 2022
Random Forests for Regression with Missing Entries

Random Forests for Regression with Missing Entries These are specific codes used in the article: On the Consistency of a Random Forest Algorithm in th

Irving Gómez-Méndez 1 Nov 15, 2021
[ICLR2021] Unlearnable Examples: Making Personal Data Unexploitable

Unlearnable Examples Code for ICLR2021 Spotlight Paper "Unlearnable Examples: Making Personal Data Unexploitable " by Hanxun Huang, Xingjun Ma, Sarah

Hanxun Huang 98 Dec 07, 2022
Supervised Contrastive Learning for Product Matching

Contrastive Product Matching This repository contains the code and data download links to reproduce the experiments of the paper "Supervised Contrasti

Web-based Systems Group @ University of Mannheim 18 Dec 10, 2022
Diverse Object-Scene Compositions For Zero-Shot Action Recognition

Diverse Object-Scene Compositions For Zero-Shot Action Recognition This repository contains the source code for the use of object-scene compositions f

7 Sep 21, 2022
A Python library for differentiable optimal control on accelerators.

A Python library for differentiable optimal control on accelerators.

Google 80 Dec 21, 2022
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion

Yandex Research 355 Jan 06, 2023
Official PyTorch implementation of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image", ICCV 2019

PoseNet of "Camera Distance-aware Top-down Approach for 3D Multi-person Pose Estimation from a Single RGB Image" Introduction This repo is official Py

Gyeongsik Moon 677 Dec 25, 2022
A PyTorch implementation of the continual learning experiments with deep neural networks

Brain-Inspired Replay A PyTorch implementation of the continual learning experiments with deep neural networks described in the following paper: Brain

182 Dec 27, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
AI Summer's complete catalog of articles

Learn Deep Learning with AI Summer A collection of all articles (almost 100) written for the AI Summer blog organized by topic. Deep Learning Theory M

AI Summer 95 Dec 29, 2022
Avalanche RL: an End-to-End Library for Continual Reinforcement Learning

Avalanche RL: an End-to-End Library for Continual Reinforcement Learning Avalanche Website | Getting Started | Examples | Tutorial | API Doc | Paper |

ContinualAI 43 Dec 24, 2022
Code for "Long Range Probabilistic Forecasting in Time-Series using High Order Statistics"

Long Range Probabilistic Forecasting in Time-Series using High Order Statistics This is the code produced as part of the paper Long Range Probabilisti

16 Dec 06, 2022
Bayesian Generative Adversarial Networks in Tensorflow

Bayesian Generative Adversarial Networks in Tensorflow This repository contains the Tensorflow implementation of the Bayesian GAN by Yunus Saatchi and

Andrew Gordon Wilson 1k Nov 29, 2022
MRQy is a quality assurance and checking tool for quantitative assessment of magnetic resonance imaging (MRI) data.

Front-end View Backend View Table of Contents Description Prerequisites Running Basic Information Measurements User Interface Feedback and usage Descr

Center for Computational Imaging and Personalized Diagnostics 58 Dec 02, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
My implementation of transformers related papers for computer vision in pytorch

vision_transformers This is my personnal repo to implement new transofrmers based and other computer vision DL models I am currenlty working without a

samsja 1 Nov 10, 2021
This repo is official PyTorch implementation of MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices(CVPRW 2021).

Github Code of "MobileHumanPose: Toward real-time 3D human pose estimation in mobile devices" Introduction This repo is official PyTorch implementatio

Choi Sang Bum 203 Jan 05, 2023
Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 904 Dec 21, 2022