Code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction

Overview

Official PyTorch code for Transformers Solve Limited Receptive Field for Monocular Depth Prediction.
Guanglei Yang, Hao Tang, Mingli Ding, Nicu Sebe, Elisa Ricci.
Apply Transformer into depth predciton and surface normal estimation.

Prepare pretrain model

we choose R50-ViT-B_16 as our encoder.

wget https://storage.googleapis.com/vit_models/imagenet21k/R50+ViT-B_16.npz 
mkdir ./model/vit_checkpoint/imagenet21k 
mv R50+ViT-B_16.npz ./model/vit_checkpoint/imagenet21k/R50+ViT-B_16.npz

Prepare Dateset

prepare nyu

mkdir -p pytorch/dataset/nyu_depth_v2
python utils/download_from_gdrive.py 1AysroWpfISmm-yRFGBgFTrLy6FjQwvwP pytorch/dataset/nyu_depth_v2/sync.zip
cd pytorch/dataset/nyu_depth_v2
unzip sync.zip

prepare kitti

cd dataset
mkdir kitti_dataset
cd kitti_dataset
### image move kitti_archives_to_download.txt into kitti_dataset
wget -i kitti_archives_to_download.txt

### label
wget https://s3.eu-central-1.amazonaws.com/avg-kitti/data_depth_annotated.zip
unzip data_depth_annotated.zip
cd train
mv * ../
cd ..  
rm -r train
cd val
mv * ../
cd ..
rm -r val
rm data_depth_annotated.zip

Environment

pip install -r requirement.txt

Run

Train

CUDA_VISIBLE_DEVICES=0,1,2,3 python bts_main.py arguments_train_nyu.txt
CUDA_VISIBLE_DEVICES=0,1,2,3 python bts_main.py arguments_train_eigen.txt

Test: Pick up nice result

CUDA_VISIBLE_DEVICES=1 python bts_test.py arguments_test_nyu.txt
python ../utils/eval_with_pngs.py --pred_path vis_att_bts_nyu_v2_pytorch_att/raw/ --gt_path ../../dataset/nyu_depth_v2/official_splits/test/ --dataset nyu --min_depth_eval 1e-3 --max_depth_eval 10 --eigen_crop
CUDA_VISIBLE_DEVICES=1 python bts_test.py arguments_test_eigen.txt
python ../utils/eval_with_pngs.py --pred_path vis_att_bts_eigen_v2_pytorch_att/raw/ --gt_path ./dataset/kitti_dataset/ --dataset kitti --min_depth_eval 1e-3 --max_depth_eval 80 --do_kb_crop --garg_crop

Debug

CUDA_VISIBLE_DEVICES=1 python bts_main.py arguments_train_nyu_debug.txt

Download Pretrained Model

sh scripts/download_TransDepth_model.sh kitti_depth

sh scripts/download_TransDepth_model.sh nyu_depth

sh scripts/download_TransDepth_model.sh nyu_surfacenormal

Reference

BTS

ViT

Do‘s code

Visualization result share

We provide all vis result of all tasks. link

Owner
stanley
stanley
Rot-Pro: Modeling Transitivity by Projection in Knowledge Graph Embedding

Rot-Pro : Modeling Transitivity by Projection in Knowledge Graph Embedding This repository contains the source code for the Rot-Pro model, presented a

Tewi 9 Sep 28, 2022
Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation

TVT Code of TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation Datasets: Digit: MNIST, SVHN, USPS Object: Office, Office-Home, Vi

37 Dec 15, 2022
A program to recognize fruits on pictures or videos using yolov5

Yolov5 Fruits Detector Requirements Either Linux or Windows. We recommend Linux for better performance. Python 3.6+ and PyTorch 1.7+. Installation To

Fateme Zamanian 30 Jan 06, 2023
Industrial knn-based anomaly detection for images. Visit streamlit link to check out the demo.

Industrial KNN-based Anomaly Detection ⭐ Now has streamlit support! ⭐ Run $ streamlit run streamlit_app.py This repo aims to reproduce the results of

aventau 102 Dec 26, 2022
Chinese named entity recognization with BiLSTM using Keras

Chinese named entity recognization (Bilstm with Keras) Project Structure ./ ├── README.md ├── data │   ├── README.md │   ├── data 数据集 │   │   ├─

1 Dec 17, 2021
Simple, but essential Bayesian optimization package

BayesO: A Bayesian optimization framework in Python Simple, but essential Bayesian optimization package. http://bayeso.org Online documentation Instal

Jungtaek Kim 74 Dec 05, 2022
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021

Image Translation with ASAPNets Spatially-Adaptive Pixelwise Networks for Fast Image Translation, CVPR 2021 Webpage | Paper | Video Installation insta

Tamar Rott Shaham 100 Dec 28, 2022
Advantage Actor Critic (A2C): jax + flax implementation

Advantage Actor Critic (A2C): jax + flax implementation Current version supports only environments with continious action spaces and was tested on muj

Andrey 3 Jan 23, 2022
Code for reproducing our analysis in the paper titled: Image Cropping on Twitter: Fairness Metrics, their Limitations, and the Importance of Representation, Design, and Agency

Image Crop Analysis This is a repo for the code used for reproducing our Image Crop Analysis paper as shared on our blog post. If you plan to use this

Twitter Research 239 Jan 02, 2023
E2e music remastering system - End-to-end Music Remastering System Using Self-supervised and Adversarial Training

End-to-end Music Remastering System This repository includes source code and pre

Junghyun (Tony) Koo 37 Dec 15, 2022
A standard framework for modelling Deep Learning Models for tabular data

PyTorch Tabular aims to make Deep Learning with Tabular data easy and accessible to real-world cases and research alike.

801 Jan 08, 2023
Website for D2C paper

D2C This is the repository that contains source code for the D2C Website. If you find D2C useful for your work please cite: @article{sinha2021d2c au

1 Oct 21, 2021
A tiny, pedagogical neural network library with a pytorch-like API.

candl A tiny, pedagogical implementation of a neural network library with a pytorch-like API. The primary use of this library is for education. Use th

Sri Pranav 3 May 23, 2022
A Flexible Generative Framework for Graph-based Semi-supervised Learning (NeurIPS 2019)

G3NN This repo provides a pytorch implementation for the 4 instantiations of the flexible generative framework as described in the following paper: A

Jiaqi Ma 14 Oct 11, 2022
Streamlit Tutorial (ex: stock price dashboard, cartoon-stylegan, vqgan-clip, stylemixing, styleclip, sefa)

Streamlit Tutorials Install pip install streamlit Run cd [directory] streamlit run app.py --server.address 0.0.0.0 --server.port [your port] # http:/

Jihye Back 30 Jan 06, 2023
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
classification task on dataset-CIFAR10,by using Tensorflow/keras

CIFAR10-Tensorflow classification task on dataset-CIFAR10,by using Tensorflow/keras 在这一个库中,我使用Tensorflow与keras框架搭建了几个卷积神经网络模型,针对CIFAR10数据集进行了训练与测试。分别使

3 Oct 17, 2021
Implementation of neural class expression synthesizers

NCES Implementation of neural class expression synthesizers (NCES) Installation Clone this repository: https://github.com/ConceptLengthLearner/NCES.gi

NeuralConceptSynthesis 0 Jan 06, 2022
Libtorch yolov3 deepsort

Overview It is for my undergrad thesis in Tsinghua University. There are four modules in the project: Detection: YOLOv3 Tracking: SORT and DeepSORT Pr

Xu Wei 226 Dec 13, 2022