CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

Overview

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI-Context-Aware Interpretable Point-of-Interest Recommendation Framework

This repository contains a framework for Recommender Systems (RecSys), allowing users to choose a dataset on a model based on their demand.

CAPRI Overview

CAPRI

☑️ Prerequisites

You will need below libraries to be installed before running the application:

  • Python >= 3.4
  • NumPy >= 1.19
  • SciPy >= 1.6
  • PyInquirer >= 1.0.3

For a simple solution, you can simply run the below command in the root directory:

pip install -r prerequisites.txt

🚀 Launch the Application

Start the project by running the main.py in the root directory. With this, the application settings are loaded from the config.py file. You can select from different options to choose a model (e.g. GeoSoCa, available on the Models folder) and a dataset (e.g. Yelp, available on the Data folder) to be processed by the selected model, along with a fusion operator (e.g. prodect or sum). The system starts processing data using the selected model and provides some evaluations on it as well. The final results will be added to the Generated folder, withe the name template representing which model has been emplyed on which dataset and with what item selection rate.

🧩 Contribution Guide

Contribution to the project can be done through various approaches:

Adding a new dataset

All datasets can be found in ./Data/ directory. In order to add a new dataset, you should:

  • Modify the config.py file and add a record to the datasets dictionary. The key of the item should be the dataset's name (CapitalCase) and the value is an array of strings containing the dataset scopes (all CapitalCase). For instance
"DatasetName":  ["Scope1", "Scope2", "Scope3"]
  • Add a folder to the ./Data/ directory with the exact same name selected in the previous step. This way, your configs are attached to the dataset. In the created folder, add files of the dataset (preferably camelCase, e.g. socialRelations). Note that for each of these files, a variable with the exact same name will be automatically generated and fed to the models section. You can find a sample for the dataset sturcture here:
+ Data/
	+ Dataset1
		+ datasetFile1
		+ datasetFile2
		+ datasetFile3
	+ Dataset2
		+ datasetFile4
		+ datasetFile5
		+ datasetFile6

Adding a new model

Models can be found in ./Models/ directory. In order to add a new model, you should:

  • Modify the config.py file and add a record to the models dictionary. The key of the item should be the model's name (CapitalCase) and the value is an array of strings containing the scopes that mode covers (all CapitalCase). For instance
"ModelName":  ["Scope1", "Scope2", "Scope3"]
  • Add a folder to the ./Models/ directory with the exact same name selected in the previous step. This way, your configs are attached to the model. In the created folder, add files of the model (preferably camelCase, e.g. socialRelations). Models contain a main.py file that holds the contents of the model. The file main.py contains a class with the exact name of the model and the letter 'Main' (e.g. ModelNameMain). This class should contain a main function with two argument: (i) datasetFiles dictionary, (ii) the parameters of the selected model (including top-K items for evaluation, sparsity ratio, restricted list for computation, and dataset name). For a better description, check the code sample below:
import numpy as np
...

class NewModelMain:
	def main(datasetFiles, parameters):
		print('Other codes goes here')

There is a utils.py file in the ./Models/ directory that keeps the utilities that can be used in all models. If you are thinking about a customized utilities with other functions, you can add an extendedUtils.py file in the model's directory. Also, a /lib/ directory is considered in each model folders that contains the libraries used in the model. You can find a sample for the dataset sturcture here:

+ Models/
	+ Model1/
		+ lib/
		+ __init__.py
		+ main.py
		+ extendedUtils.py
	+ utils.py
	+ __init__.py

Note: do not forget to add a init.py file to the directories you make.

Adding a new evaluation

You can simply add the evaluations to the ./Evaluations/metrics.py file.

⚠️ TODOs

  • Add a proper caching policy to check the Generated directory
  • Unifying saveModel and loadModel in utils.py
  • Add the impact of fusions when running models
  • Add a logging functionality
Owner
RecSys Lab
The RecSys Lab is a collaboration to investigate a new view of analysis in the domain of recommendation.
RecSys Lab
Image Super-Resolution Using Very Deep Residual Channel Attention Networks

Image Super-Resolution Using Very Deep Residual Channel Attention Networks

kongdebug 14 Oct 14, 2022
I decide to sync up this repo and self-critical.pytorch. (The old master is in old master branch for archive)

An Image Captioning codebase This is a codebase for image captioning research. It supports: Self critical training from Self-critical Sequence Trainin

Ruotian(RT) Luo 1.3k Dec 31, 2022
McGill Physics Hackathon 2021: Reaction-Diffusion Models for the Generation of Biological Patterns

DiffuseAnimals: Reaction-Diffusion Models for the Generation of Biological Patterns Introduction Reaction-diffusion equations can be utilized in order

Austin Szuminsky 2 Mar 07, 2022
BanditPAM: Almost Linear-Time k-Medoids Clustering

BanditPAM: Almost Linear-Time k-Medoids Clustering This repo contains a high-performance implementation of BanditPAM from BanditPAM: Almost Linear-Tim

254 Dec 12, 2022
Re-implementation of the Noise Contrastive Estimation algorithm for pyTorch, following "Noise-contrastive estimation: A new estimation principle for unnormalized statistical models." (Gutmann and Hyvarinen, AISTATS 2010)

Noise Contrastive Estimation for pyTorch Overview This repository contains a re-implementation of the Noise Contrastive Estimation algorithm, implemen

Denis Emelin 42 Nov 24, 2022
A containerized REST API around OpenAI's CLIP model.

OpenAI's CLIP — REST API This is a container wrapping OpenAI's CLIP model in a RESTful interface. Running the container locally First, build the conta

Santiago Valdarrama 48 Nov 06, 2022
1st Solution For NeurIPS 2021 Competition on ML4CO Dual Task

KIDA: Knowledge Inheritance in Data Aggregation This project releases our 1st place solution on NeurIPS2021 ML4CO Dual Task. Slide and model weights a

MEGVII Research 24 Sep 08, 2022
We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC).

EMTAUC We provided a matlab implementation for an evolutionary multitasking AUC optimization framework (EMTAUC). In this code, SBGA is considered a ba

7 Nov 24, 2022
An image classification app boilerplate to serve your deep learning models asap!

Image 🖼 Classification App Boilerplate Have you been puzzled by tons of videos, blogs and other resources on the internet and don't know where and ho

Smaranjit Ghose 27 Oct 06, 2022
Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors, CVPR 2021

Human POSEitioning System (HPS): 3D Human Pose Estimation and Self-localization in Large Scenes from Body-Mounted Sensors Human POSEitioning System (H

Aymen Mir 66 Dec 21, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
This is an official implementation for "PlaneRecNet".

PlaneRecNet This is an official implementation for PlaneRecNet: A multi-task convolutional neural network provides instance segmentation for piece-wis

yaxu 50 Nov 17, 2022
Source code for the paper "SEPP: Similarity Estimation of Predicted Probabilities for Defending and Detecting Adversarial Text" PACLIC 2021

Adversarial text generator Refer to "adversarial_text_generator"[https://github.com/quocnsh/SEPP_generator] project for generating adversarial texts A

0 Oct 05, 2021
S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural Networks via Guided Distribution Calibration (CVPR 2021)

S2-BNN (Self-supervised Binary Neural Networks Using Distillation Loss) This is the official pytorch implementation of our paper: "S2-BNN: Bridging th

Zhiqiang Shen 52 Dec 24, 2022
noisy labels; missing labels; semi-supervised learning; entropy; uncertainty; robustness and generalisation.

ProSelfLC: CVPR 2021 ProSelfLC: Progressive Self Label Correction for Training Robust Deep Neural Networks For any specific discussion or potential fu

amos_xwang 57 Dec 04, 2022
A set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI.

Overview This is a set of simple scripts to process the Imagenet-1K dataset as TFRecords and make index files for NVIDIA DALI. Make TFRecords To run t

8 Nov 01, 2022
A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model.

Semantic Meshes A framework for annotating 3D meshes using the predictions of a 2D semantic segmentation model. Paper If you find this framework usefu

Florian 40 Dec 09, 2022
Face detection using deep learning.

Face Detection Docker Solution Using Faster R-CNN Dockerface is a deep learning face detector. It deploys a trained Faster R-CNN network on Caffe thro

Nataniel Ruiz 181 Dec 19, 2022
Scripts and outputs related to the paper Prediction of Adverse Biological Effects of Chemicals Using Knowledge Graph Embeddings.

Knowledge Graph Embeddings and Chemical Effect Prediction, 2020. Scripts and outputs related to the paper Prediction of Adverse Biological Effects of

Knowledge Graphs at the Norwegian Institute for Water Research 1 Nov 01, 2021