Convnet transfer - Code for paper How transferable are features in deep neural networks?

Overview

How transferable are features in deep neural networks?

This repository contains source code necessary to reproduce the results presented in the following paper:

@inproceedings{yosinski_2014_NIPS
  title={How transferable are features in deep neural networks?},
  author={Yosinski, Jason and Clune, Jeff and Bengio, Yoshua and Lipson, Hod},
  booktitle={Advances in Neural Information Processing Systems 27 (NIPS '14)},
  editor = {Z. Ghahramani and M. Welling and C. Cortes and N.D. Lawrence and K.Q. Weinberger},
  publisher = {Curran Associates, Inc.},
  pages = {3320--3328},
  year={2014}
}

The are four steps to using this codebase to reproduce the results in the paper.

  • Assemble prerequisites
  • Create datasets
  • Train models
  • Gather and plot results

Each is described below. Training results are also provided in the results directory for those just wishing to compare results to their own work without undertaking the arduous training process.

Assemble prerequisites

Several dependencies should be installed.

  • To run experiments: Caffe and its relevant dependencies (see install tutorial).
  • To produce plots: the IPython, numpy, and matplotlib packages for python. Depending on your setup, it may be possible to install these via pip install ipython numpy matplotlib.

Create Datasets

1. Obtain ILSVRC 2012 dataset

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 dataset can be downloaded here (registration required).

2. Create derivative dataset splits

The necessary smaller derivative datasets (random halves, natural and man-made halves, and reduced volume versions) can be created from the raw ILSVRC12 dataset.

$ cd ilsvrc12
$ ./make_reduced_datasets.sh

The script will do most of the work, including setting random seeds to hopefully produce the exact same random splits used in the paper. Md5sums are listed for each dataset file at the bottom of make_reduced_datasets.sh, which can be used to verify the match. Results may vary on different platforms though, so don't worry too much if your sums don't match.

3. Convert datasets to databases

The datasets created above are so far just text files providing a list of image filenames and class ids. To train a Caffe model, they should be converted to a LevelDB or LMDB, one per dataset. See the Caffe ImageNet Tutorial for a more in depth look at this process.

First, edit create_all_leveldbs.sh and set the IMAGENET_DIR and CAFFE_TOOLS_DIR to point to the directories containing the ImageNet image files and compiled caffe tools (like convert_imageset.bin), respectively. Then run:

$ ./create_all_leveldbs.sh

This step takes a lot of space (and time), approximately 230 GB for the base training dataset, and on average 115 GB for each of the 10 split versions, for a total of about 1.5 TB. If this is prohibitive, you might consider using a different type of data layer type for Caffe that loads images directly from a single shared directory.

4. Compute the mean of each dataset

Again, edit the paths in the script to point to the appropriate locations, and then run:

$ ./create_all_means.sh

This just computes the mean of each dataset and saves it in the dataset directory. Means are subtracted from input images during training and inference.

Train models

A total of 163 networks were trained to produce the results in the paper. Many of these networks can be trained in parallel, but because weights are transferred from one network to another, some must be trained serially. In particular, all networks in the first block below must be trained before any in the second block can be trained. All networks within a block may be trained at the same time. The "whenever" block does not contain dependencies and can be trained any time.

Block: one
  half*       (10 nets)

Block: two
  transfer*   (140 nets)

Block: whenever
  netbase     (1 net)
  reduced-*   (12 nets)

To train a given network, change to its directory, copy (or symlink) the required caffe executable, and run the training procedure. This can be accomplished using the following commands, demonstrated for the half0A network:

$ cd results/half0A
$ cp /path/to/caffe/build/tools/caffe.bin .
$ ./caffe.bin train -solver imagenet_solver.prototxt

Repeat this process for all networks in block: one and block: whenever above. Once the networks in block: one are trained, train all the networks in block: two similarly. This time the command is slightly different, because we need to load the base network in order to fine-tune it on the target task. Here's an example for the transfer0A0A_1_1 network:

$ cd results/transfer0A0A_1_1
$ cp /path/to/caffe/build/tools/caffe.bin .
$ ./caffe.bin train -solver imagenet_solver.prototxt -weights basenet/caffe_imagenet_train_iter_450000

The basenet symlinks have been added to point to the appropriate base network, but the basenet/caffe_imagenet_train_iter_450000 file will not exist until the relevant block: one networks has been trained.

Training notes: while the above procedure should work if followed literally, because each network takes about 9.5 days to train (on a K20 GPU), it will be much faster to train networks in parallel in a cluster environment. To do so, create and submit jobs as appropriate for your system. You'll also want to ensure that the output of the training procedure is logged, either by piping to a file

$ ./caffe.bin train ... > log_file 2>&1

or via whatever logging facilities are supplied by your cluster or job manager setup.

Plot results

Once the networks are trained, the results can be plotted using the included IPython notebook plots/transfer_plots.ipynb. Start the IPython Notebook server:

$ cd plots
$ ipython notebook

Select the transfer_plots.ipynb notebook and execute the included code. Note that without modification, the code will load results from the cached log files included in this repository. If you've run your own training and wish to plot those log files, change the paths in the "Load all the data" section to point to your log files instead.

Shortcut: to skip all the work and just see the results, take a look at this notebook with cached plots.

Questions?

Please drop me a line if you have any questions!

Owner
Jason Yosinski
Jason Yosinski
simple demo codes for Learning to Teach with Dynamic Loss Functions

Learning to Teach with Dynamic Loss Functions This repo contains the simple demo for the NeurIPS-18 paper: Learning to Teach with Dynamic Loss Functio

Lijun Wu 15 Dec 30, 2021
A toolkit for developing and comparing reinforcement learning algorithms.

Status: Maintenance (expect bug fixes and minor updates) OpenAI Gym OpenAI Gym is a toolkit for developing and comparing reinforcement learning algori

OpenAI 29.6k Jan 08, 2023
Diverse Image Captioning with Context-Object Split Latent Spaces (NeurIPS 2020)

Diverse Image Captioning with Context-Object Split Latent Spaces This repository is the PyTorch implementation of the paper: Diverse Image Captioning

Visual Inference Lab @TU Darmstadt 34 Nov 21, 2022
Server files for UltimateLabeling

UltimateLabeling server files Server files for UltimateLabeling. git clone https://github.com/alexandre01/UltimateLabeling_server.git cd UltimateLabel

Alexandre Carlier 4 Oct 10, 2022
Official implementation of "Open-set Label Noise Can Improve Robustness Against Inherent Label Noise" (NeurIPS 2021)

Open-set Label Noise Can Improve Robustness Against Inherent Label Noise NeurIPS 2021: This repository is the official implementation of ODNL. Require

Hongxin Wei 12 Dec 07, 2022
计算机视觉中用到的注意力模块和其他即插即用模块PyTorch Implementation Collection of Attention Module and Plug&Play Module

PyTorch实现多种计算机视觉中网络设计中用到的Attention机制,还收集了一些即插即用模块。由于能力有限精力有限,可能很多模块并没有包括进来,有任何的建议或者改进,可以提交issue或者进行PR。

PJDong 599 Dec 23, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
Open-Set Recognition: A Good Closed-Set Classifier is All You Need

Open-Set Recognition: A Good Closed-Set Classifier is All You Need Code for our paper: "Open-Set Recognition: A Good Closed-Set Classifier is All You

194 Jan 03, 2023
Hypersim: A Photorealistic Synthetic Dataset for Holistic Indoor Scene Understanding

The Hypersim Dataset For many fundamental scene understanding tasks, it is difficult or impossible to obtain per-pixel ground truth labels from real i

Apple 1.3k Jan 04, 2023
repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments

repro_eval repro_eval is a collection of measures to evaluate the reproducibility/replicability of system-oriented IR experiments. The measures were d

IR Group at Technische Hochschule Köln 9 May 25, 2022
TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Prediction.

TalkNet 2 [WIP] TalkNet 2: Non-Autoregressive Depth-Wise Separable Convolutional Model for Speech Synthesis with Explicit Pitch and Duration Predictio

Rishikesh (ऋषिकेश) 69 Dec 17, 2022
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
Code for ACM MM 2020 paper "NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination"

NOH-NMS: Improving Pedestrian Detection by Nearby Objects Hallucination The offical implementation for the "NOH-NMS: Improving Pedestrian Detection by

Tencent YouTu Research 64 Nov 11, 2022
Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Deep Constrained Least Squares for Blind Image Super-Resolution [Paper] This is the official implementation of 'Deep Constrained Least Squares for Bli

MEGVII Research 141 Dec 30, 2022
Breast cancer is been classified into benign tumour and malignant tumour.

Breast cancer is been classified into benign tumour and malignant tumour. Logistic regression is applied in this model.

1 Feb 04, 2022
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
ScaleNet: A Shallow Architecture for Scale Estimation

ScaleNet: A Shallow Architecture for Scale Estimation Repository for the code of ScaleNet paper: "ScaleNet: A Shallow Architecture for Scale Estimatio

Axel Barroso 34 Nov 09, 2022
Yolov5 deepsort inference,使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中

使用YOLOv5+Deepsort实现车辆行人追踪和计数,代码封装成一个Detector类,更容易嵌入到自己的项目中。

813 Dec 31, 2022
WatermarkRemoval-WDNet-WACV2021

WatermarkRemoval-WDNet-WACV2021 Thank you for your attention. Citation Please cite the related works in your publications if it helps your research: @

LUYI 63 Dec 05, 2022
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022