Official PyTorch implementation of the paper "Deep Constrained Least Squares for Blind Image Super-Resolution", CVPR 2022.

Overview

Deep Constrained Least Squares for Blind Image Super-Resolution

[Paper]

This is the official implementation of 'Deep Constrained Least Squares for Blind Image Super-Resolution', CVPR 2022.

Updates

[2022.03.09] We released the code and provided the pretrained model weights here.
[2022.03.02] Our paper has been accepted by CVPR 2022.

DCLS

Overview

DCLS

Dependenices

  • OS: Ubuntu 18.04
  • nvidia :
    • cuda: 10.1
    • cudnn: 7.6.1
  • python3
  • pytorch >= 1.6
  • Python packages: numpy opencv-python lmdb pyyaml

Dataset Preparation

We use DIV2K and Flickr2K as our training datasets (totally 3450 images).

To transform datasets to binary files for efficient IO, run:

python3 codes/scripts/create_lmdb.py

For evaluation of Isotropic Gaussian kernels (Gaussian8), we use five datasets, i.e., Set5, Set14, Urban100, BSD100 and Manga109.

To generate LRblur/LR/HR/Bicubic datasets paths, run:

python3 codes/scripts/generate_mod_blur_LR_bic.py

For evaluation of Anisotropic Gaussian kernels, we use DIV2KRK.

(You need to modify the file paths by yourself.)

Train

  1. The core algorithm is in codes/config/DCLS.
  2. Please modify codes/config/DCLS/options to set path, iterations, and other parameters...
  3. To train the model(s) in the paper, run below commands.

For single GPU:

cd codes/config/DCLS
python3 train.py -opt=options/setting1/train_setting1_x4.yml

For distributed training

cd codes/config/DCLS
python3 -m torch.distributed.launch --nproc_per_node=4 --master_poer=4321 train.py -opt=options/setting1/train_setting1_x4.yml --launcher pytorch

Or choose training options use

cd codes/config/DCLS
sh demo.sh

Evaluation

To evalute our method, please modify the benchmark path and model path and run

cd codes/config/DCLS
python3 test.py -opt=options/setting1/test_setting1_x4.yml

Results

Comparison on Isotropic Gaussian kernels (Gaussian8)

ISO kernel

Comparison on Anisotropic Gaussian kernels (DIV2KRK)

ANISO kernel

Citations

If our code helps your research or work, please consider citing our paper. The following is a BibTeX reference.

@article{luo2022deep,
  title={Deep Constrained Least Squares for Blind Image Super-Resolution},
  author={Luo, Ziwei and Huang, Haibin and Yu, Lei and Li, Youwei and Fan, Haoqiang and Liu, Shuaicheng},
  journal={IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year={2022}
}

Contact

email: [[email protected]]

Acknowledgement

This project is based on [DAN], [MMSR] and [BasicSR].

Owner
MEGVII Research
Power Human with AI. 持续创新拓展认知边界 非凡科技成就产品价值
MEGVII Research
Multi-Task Deep Neural Networks for Natural Language Understanding

New Release We released Adversarial training for both LM pre-training/finetuning and f-divergence. Large-scale Adversarial training for LMs: ALUM code

Xiaodong 2.1k Dec 30, 2022
DeepVoxels is an object-specific, persistent 3D feature embedding.

DeepVoxels is an object-specific, persistent 3D feature embedding. It is found by globally optimizing over all available 2D observations of

Vincent Sitzmann 196 Dec 25, 2022
Automated Attendance Project Using Face Recognition

dependencies for project: cmake 3.22.1 dlib 19.22.1 face-recognition 1.3.0 openc

Rohail Taha 1 Jan 09, 2022
Code & Data for the Paper "Time Masking for Temporal Language Models", WSDM 2022

Time Masking for Temporal Language Models This repository provides a reference implementation of the paper: Time Masking for Temporal Language Models

Guy Rosin 12 Jan 06, 2023
Estimating Example Difficulty using Variance of Gradients

Estimating Example Difficulty using Variance of Gradients This repository contains source code necessary to reproduce some of the main results in the

Chirag Agarwal 48 Dec 26, 2022
The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at .

PixelNet: Representation of the pixels, by the pixels, and for the pixels. We explore design principles for general pixel-level prediction problems, f

Aayush Bansal 196 Aug 10, 2022
Code repository for the paper "Tracking People with 3D Representations"

Tracking People with 3D Representations Code repository for the paper "Tracking People with 3D Representations" (paper link) (project site). Jathushan

Jathushan Rajasegaran 77 Dec 03, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
code from "Tensor decomposition of higher-order correlations by nonlinear Hebbian plasticity"

Code associated with the paper "Tensor decomposition of higher-order correlations by nonlinear Hebbian learning," Ocker & Buice, Neurips 2021. "plot_f

Gabriel Koch Ocker 4 Oct 16, 2022
Small repo describing how to use Hugging Face's Wav2Vec2 with PyCTCDecode

🤗 Transformers Wav2Vec2 + PyCTCDecode Introduction This repo shows how 🤗 Transformers can be used in combination with kensho-technologies's PyCTCDec

Patrick von Platen 102 Oct 22, 2022
Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs at the moment, Cycles and Arnold supported

GafferHaven Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs are supported at the moment, in Cycles and Arnold lights.

Jakub Vondra 6 Jan 26, 2022
Object detection evaluation metrics using Python.

Object detection evaluation metrics using Python.

Louis Facun 2 Sep 06, 2022
The official PyTorch implementation of recent paper - SAINT: Improved Neural Networks for Tabular Data via Row Attention and Contrastive Pre-Training

This repository is the official PyTorch implementation of SAINT. Find the paper on arxiv SAINT: Improved Neural Networks for Tabular Data via Row Atte

Gowthami Somepalli 284 Dec 21, 2022
A very short and easy implementation of Quantile Regression DQN

Quantile Regression DQN Quantile Regression DQN a Minimal Working Example, Distributional Reinforcement Learning with Quantile Regression (https://arx

Arsenii Senya Ashukha 80 Sep 17, 2022
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
Wafer Fault Detection using MlOps Integration

Wafer Fault Detection using MlOps Integration This is an end to end machine learning project with MlOps integration for predicting the quality of wafe

Sethu Sai Medamallela 0 Mar 11, 2022
.NET bindings for the Pytorch engine

TorchSharp TorchSharp is a .NET library that provides access to the library that powers PyTorch. It is a work in progress, but already provides a .NET

Matteo Interlandi 17 Aug 30, 2021
Author's PyTorch implementation of TD3 for OpenAI gym tasks

Addressing Function Approximation Error in Actor-Critic Methods PyTorch implementation of Twin Delayed Deep Deterministic Policy Gradients (TD3). If y

Scott Fujimoto 1.3k Dec 25, 2022
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

JuMP-dev 284 Jan 04, 2023