Python code for ICLR 2022 spotlight paper EViT: Expediting Vision Transformers via Token Reorganizations

Related tags

Text Data & NLPevit
Overview

Expediting Vision Transformers via Token Reorganizations

This repository contains PyTorch evaluation code, training code and pretrained EViT models for the ICLR 2022 Spotlight paper:

Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations

Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song, Jue Wang, Pengtao Xie

The proposed EViT models obtain competitive tradeoffs in terms of speed / precision:

EViT

If you use this code for a paper please cite:

@inproceedings{liang2022evit,
title={Not All Patches are What You Need: Expediting Vision Transformers via Token Reorganizations},
author={Youwei Liang and Chongjian Ge and Zhan Tong and Yibing Song and Jue Wang and Pengtao Xie},
booktitle={International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=BjyvwnXXVn_}
}

Model Zoo

We provide EViT-DeiT-S models pretrained on ImageNet 2012.

Token fusion Keep rate [email protected] [email protected] #Params URL
0.9 79.8 95.0 22.1M model
0.8 79.8 94.9 22.1M model
0.7 79.5 94.8 22.1M model
0.6 78.9 94.5 22.1M model
0.5 78.5 94.2 22.1M model
0.9 79.9 94.9 22.1M model
0.8 79.7 94.8 22.1M model
0.7 79.4 94.7 22.1M model
0.6 79.1 94.5 22.1M model
0.5 78.4 94.1 22.1M model

Preparation

The reported results in the paper were obtained with models trained with 16 NVIDIA A100 GPUs using Python3.6 and the following packages

torch==1.9.0
torchvision==0.10.0
timm==0.4.12
tensorboardX==2.4
torchprofile==0.0.4
lmdb==1.2.1
pyarrow==5.0.0

These packages can be installed by running pip install -r requirements.txt.

Data preparation

Download and extract ImageNet train and val images from http://image-net.org/. The directory structure is the standard layout for the torchvision datasets.ImageFolder, and the training and validation data is expected to be in the train/ folder and val folder respectively:

/path/to/imagenet/
  train/
    class1/
      img1.jpeg
    class2/
      img2.jpeg
  val/
    class1/
      img3.jpeg
    class/2
      img4.jpeg

We use the same datasets as in DeiT. You can optionally use an LMDB dataset for ImageNet by building it using folder2lmdb.py and passing --use-lmdb to main.py, which may speed up data loading.

Usage

First, clone the repository locally:

git clone https://github.com/youweiliang/evit.git

Change directory to the cloned repository by running cd evit, install necessary packages, and prepare the datasets.

Training

To train EViT/0.7-DeiT-S on ImageNet, set the datapath (path to dataset) and logdir (logging directory) in run_code.sh properly and run bash ./run_code.sh (--nproc_per_node should be modified if necessary). Note that the batch size in the paper is 16x128=2048.

Set --base_keep_rate in run_code.sh to use a different keep rate, and set --fuse_token to configure whether to use inattentive token fusion.

Training/Finetuning on higher resolution images

To training on images with a (higher) resolution h, set --input-size h in run_code.sh.

Multinode training

Please refer to DeiT for multinode training.

Finetuning

First set the datapath, logdir, and ckpt (the model checkpoint for finetuning) in run_code.sh, and then run bash ./finetune.sh.

Evaluation

To evaluate a pre-trained EViT/0.7-DeiT-S model on ImageNet val with a single GPU run (replacing checkpoint with the actual file):

python3 main.py --model deit_small_patch16_shrink_base --fuse_token --base_keep_rate 0.7 --eval --resume checkpoint --data-path /path/to/imagenet

You can also pass --dist-eval to use multiple GPUs for evaluation.

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Acknowledgement

We would like to think the authors of DeiT, based on which this project is built.

Owner
Youwei Liang
Youwei Liang
Natural Language Processing

NLP Natural Language Processing apps Multilingual_NLP.py start #This script is demonstartion of Mul

Ritesh Sharma 1 Oct 31, 2021
An ActivityWatch watcher to pose questions to the user and record her answers.

aw-watcher-ask An ActivityWatch watcher to pose questions to the user and record her answers. This watcher uses Zenity to present dialog boxes to the

Bernardo Chrispim Baron 33 Dec 03, 2022
Predicting the usefulness of reviews given the review text and metadata surrounding the reviews.

Predicting Yelp Review Quality Table of Contents Introduction Motivation Goal and Central Questions The Data Data Storage and ETL EDA Data Pipeline Da

Jeff Johannsen 3 Nov 27, 2022
Chinese real time voice cloning (VC) and Chinese text to speech (TTS).

Chinese real time voice cloning (VC) and Chinese text to speech (TTS). 好用的中文语音克隆兼中文语音合成系统,包含语音编码器、语音合成器、声码器和可视化模块。

Kuang Dada 6 Nov 08, 2022
SimBERT升级版(SimBERTv2)!

RoFormer-Sim RoFormer-Sim,又称SimBERTv2,是我们之前发布的SimBERT模型的升级版。 介绍 https://kexue.fm/archives/8454 训练 tensorflow 1.14 + keras 2.3.1 + bert4keras 0.10.6 下载

317 Dec 23, 2022
The SVO-Probes Dataset for Verb Understanding

The SVO-Probes Dataset for Verb Understanding This repository contains the SVO-Probes benchmark designed to probe for Subject, Verb, and Object unders

DeepMind 20 Nov 30, 2022
Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch

N-Grammer - Pytorch Implementation of N-Grammer, augmenting Transformers with latent n-grams, in Pytorch Install $ pip install n-grammer-pytorch Usage

Phil Wang 66 Dec 29, 2022
Datasets of Automatic Keyphrase Extraction

This repository contains 20 annotated datasets of Automatic Keyphrase Extraction made available by the research community. Following are the datasets and the original papers that proposed them. If yo

LIAAD - Laboratory of Artificial Intelligence and Decision Support 163 Dec 23, 2022
(ACL 2022) The source code for the paper "Towards Abstractive Grounded Summarization of Podcast Transcripts"

Towards Abstractive Grounded Summarization of Podcast Transcripts We provide the source code for the paper "Towards Abstractive Grounded Summarization

10 Jul 01, 2022
PyWorld3 is a Python implementation of the World3 model

The World3 model revisited in Python Install & Hello World3 How to tune your own simulation Licence How to cite PyWorld3 with Bibtex References & ackn

Charles Vanwynsberghe 248 Dec 14, 2022
LightSeq: A High-Performance Inference Library for Sequence Processing and Generation

LightSeq is a high performance inference library for sequence processing and generation implemented in CUDA. It enables highly efficient computation of modern NLP models such as BERT, GPT2, Transform

Bytedance Inc. 2.5k Jan 03, 2023
Textlesslib - Library for Textless Spoken Language Processing

textlesslib Textless NLP is an active area of research that aims to extend NLP t

Meta Research 379 Dec 27, 2022
Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment Analysis with Affective Knowledge. Proceedings of EMNLP 2021

AAGCN-ACSA EMNLP 2021 Introduction This repository was used in our paper: Beta Distribution Guided Aspect-aware Graph for Aspect Category Sentiment An

Akuchi 36 Dec 18, 2022
A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

A simple Flask site that allows users to create, update, and delete posts in a database, as well as perform basic NLP tasks on the posts.

Ian 1 Jan 15, 2022
🚀Clone a voice in 5 seconds to generate arbitrary speech in real-time

English | 中文 Features 🌍 Chinese supported mandarin and tested with multiple datasets: aidatatang_200zh, magicdata, aishell3, data_aishell, and etc. ?

Vega 25.6k Dec 31, 2022
Summarization module based on KoBART

KoBART-summarization Install KoBART pip install git+https://github.com/SKT-AI/KoBART#egg=kobart Requirements pytorch==1.7.0 transformers==4.0.0 pytor

seujung hwan, Jung 148 Dec 28, 2022
Easy to use, state-of-the-art Neural Machine Translation for 100+ languages

EasyNMT - Easy to use, state-of-the-art Neural Machine Translation This package provides easy to use, state-of-the-art machine translation for more th

Ubiquitous Knowledge Processing Lab 748 Jan 06, 2023
Fast, DB Backed pretrained word embeddings for natural language processing.

Embeddings Embeddings is a python package that provides pretrained word embeddings for natural language processing and machine learning. Instead of lo

Victor Zhong 212 Nov 21, 2022
原神抽卡记录数据集-Genshin Impact gacha data

提要 持续收集原神抽卡记录中 可以使用抽卡记录导出工具导出抽卡记录的json,将json文件发送至[email protected],我会在清除个人信息后

117 Dec 27, 2022
Transformer training code for sequential tasks

Sequential Transformer This is a code for training Transformers on sequential tasks such as language modeling. Unlike the original Transformer archite

Meta Research 578 Dec 13, 2022