DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Overview

NVIDIA Source Code License Python 3.8

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision

Paper | Project page | Demo (Youtube) | Demo (Bilibili)

DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision.
Shiyi Lan, Zhiding Yu, Chris Choy, Subhashree Radhakrishnan, Guilin Liu, Yuke Zhu, Larry Davis, Anima Anandkumar
International Conference on Computer Vision (ICCV) 2021

This repository contains the official Pytorch implementation of training & evaluation code and pretrained models for DiscoBox. DiscoBox is a state of the art framework that can jointly predict high quality instance segmentation and semantic correspondence from box annotations.

We use MMDetection v2.10.0 as the codebase.

All of our models are trained and tested using automatic mixed precision, which leverages float16 for speedup and less GPU memory consumption.

Installation

This implementation is based on PyTorch==1.9.0, mmcv==2.13.0, and mmdetection==2.10.0

Please refer to get_started.md for installation.

Or you can download the docker image from our dockerhub repository.

Models

Results on COCO val 2017

Backbone Weights AP [email protected] [email protected] [email protected] [email protected] [email protected]
ResNet-50 download 30.7 52.6 30.6 13.3 34.1 45.6
ResNet-101-DCN download 35.3 59.1 35.4 16.9 39.2 53.0
ResNeXt-101-DCN download 37.3 60.4 39.1 17.8 41.1 55.4

Results on COCO test-dev

We also evaluate the models in the section Results on COCO val 2017 with the same weights on COCO test-dev.

Backbone Weights AP [email protected] [email protected] [email protected] [email protected] [email protected]
ResNet-50 download 32.0 53.6 32.6 11.7 33.7 48.4
ResNet-101-DCN download 35.8 59.8 36.4 16.9 38.7 52.1
ResNeXt-101-DCN download 37.9 61.4 40.0 18.0 41.1 53.9

Training

COCO

ResNet-50 (8 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_r50_fpn_3x.py 8

ResNet-101-DCN (8 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_r101_dcn_fpn_3x.py 8

ResNeXt-101-DCN (8 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_x101_dcn_fpn_3x.py 8

Pascal VOC 2012

ResNet-50 (4 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_voc_r50_fpn_6x.py 4

ResNet-101 (4 GPUs):

bash tools/dist_train.sh \
     configs/discobox/discobox_solov2_voc_r101_fpn_6x.py 4

Testing

COCO

ResNet-50 (8 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_r50_fpn_3x.py \
     work_dirs/coco_r50_fpn_3x.pth 8 --eval segm

ResNet-101-DCN (8 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_r101_dcn_fpn_3x.py \
     work_dirs/coco_r101_dcn_fpn_3x.pth 8 --eval segm

ResNeXt-101-DCN (GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_x101_dcn_fpn_3x_fp16.py \
     work_dirs/coco_x101_dcn_fpn_3x.pth 8 --eval segm

Pascal VOC 2012 (COCO API)

ResNet-50 (4 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_voc_r50_fpn_3x_fp16.py \
     work_dirs/voc_r50_6x.pth 4 --eval segm

ResNet-101 (4 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_voc_r101_fpn_3x_fp16.py \
     work_dirs/voc_r101_6x.pth 4 --eval segm

Pascal VOC 2012 (Matlab)

Step 1: generate results

ResNet-50 (4 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_voc_r50_fpn_3x_fp16.py \
     work_dirs/voc_r50_6x.pth 4 \
     --format-only \
     --options "jsonfile_prefix=work_dirs/voc_r50_results.json"

ResNet-101 (4 GPUs):

bash tools/dist_test.sh \
     configs/discobox/discobox_solov2_voc_r101_fpn_3x_fp16.py \
     work_dirs/voc_r101_6x.pth 4 \
     --format-only \
     --options "jsonfile_prefix=work_dirs/voc_r101_results.json"

Step 2: format conversion

ResNet-50:

python tools/json2mat.pywork_dirs/voc_r50_results.json work_dirs/voc_r50_results.mat

ResNet-101:

python tools/json2mat.pywork_dirs/voc_r101_results.json work_dirs/voc_r101_results.mat

Step 3: evaluation

Please visit BBTP for the evaluation code written in Matlab.

PF-Pascal

Please visit this repository.

LICENSE

Please check the LICENSE file. DiscoBox may be used non-commercially, meaning for research or evaluation purposes only. For business inquiries, please contact [email protected].

Citation

@article{lan2021discobox,
  title={DiscoBox: Weakly Supervised Instance Segmentation and Semantic Correspondence from Box Supervision},
  author={Lan, Shiyi and Yu, Zhiding and Choy, Christopher and Radhakrishnan, Subhashree and Liu, Guilin and Zhu, Yuke and Davis, Larry S and Anandkumar, Anima},
  journal={arXiv preprint arXiv:2105.06464},
  year={2021}
}
Owner
Shiyi Lan
PhD Candidate. Research Interests: Object Detection, Instance segmentation, 3D Object Detection, 3D vehicle trajectory, Weakly/Semi-supervised learning
Shiyi Lan
python library for invisible image watermark (blind image watermark)

invisible-watermark invisible-watermark is a python library and command line tool for creating invisible watermark over image.(aka. blink image waterm

Shield Mountain 572 Jan 07, 2023
Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving

GSAN Introduction Code for paper GSAN: Graph Self-Attention Network for Learning Spatial-Temporal Interaction Representation in Autonomous Driving, wh

YE Luyao 6 Oct 27, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
Pytorch implementation of paper: "NeurMiPs: Neural Mixture of Planar Experts for View Synthesis"

NeurMips: Neural Mixture of Planar Experts for View Synthesis This is the official repo for PyTorch implementation of paper "NeurMips: Neural Mixture

James Lin 101 Dec 13, 2022
HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

HiFiGAN Denoiser This is a Unofficial Pytorch implementation of the paper HiFi-GAN: High Fidelity Denoising and Dereverberation Based on Speech Deep F

Rishikesh (ऋषिकेश) 134 Dec 27, 2022
Discriminative Condition-Aware PLDA

DCA-PLDA This repository implements the Discriminative Condition-Aware Backend described in the paper: L. Ferrer, M. McLaren, and N. Brümmer, "A Speak

Luciana Ferrer 31 Aug 05, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Net2net - Network-to-Network Translation with Conditional Invertible Neural Networks

Net2Net Code accompanying the NeurIPS 2020 oral paper Network-to-Network Translation with Conditional Invertible Neural Networks Robin Rombach*, Patri

CompVis Heidelberg 206 Dec 20, 2022
Official pytorch implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

SinGAN Project | Arxiv | CVF | Supplementary materials | Talk (ICCV`19) Official pytorch implementation of the paper: "SinGAN: Learning a Generative M

Tamar Rott Shaham 3.2k Dec 25, 2022
Pre-trained Deep Learning models and demos (high quality and extremely fast)

OpenVINO™ Toolkit - Open Model Zoo repository This repository includes optimized deep learning models and a set of demos to expedite development of hi

OpenVINO Toolkit 3.4k Dec 31, 2022
Data pipelines for both TensorFlow and PyTorch!

rapidnlp-datasets Data pipelines for both TensorFlow and PyTorch ! If you want to load public datasets, try: tensorflow/datasets huggingface/datasets

1 Dec 08, 2021
Torchyolo - Yolov3 ve Yolov4 modellerin Pytorch uygulamasıdır

TORCHYOLO : Yolo Modellerin Pytorch Uygulaması Yapılacaklar: Yolov3 model.py ve

Kadir Nar 3 Aug 22, 2022
On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation

On Nonlinear Latent Transformations for GAN-based Image Editing - PyTorch implementation On Nonlinear Latent Transformations for GAN-based Image Editi

Valentin Khrulkov 22 Oct 24, 2022
Meandering In Networks of Entities to Reach Verisimilar Answers

MINERVA Meandering In Networks of Entities to Reach Verisimilar Answers Code and models for the paper Go for a Walk and Arrive at the Answer - Reasoni

Shehzaad Dhuliawala 271 Dec 13, 2022
Codes accompanying the paper "Learning Nearly Decomposable Value Functions with Communication Minimization" (ICLR 2020)

NDQ: Learning Nearly Decomposable Value Functions with Communication Minimization Note This codebase accompanies paper Learning Nearly Decomposable Va

Tonghan Wang 69 Nov 26, 2022
CPF: Learning a Contact Potential Field to Model the Hand-object Interaction

Contact Potential Field This repo contains model, demo, and test codes of our paper: CPF: Learning a Contact Potential Field to Model the Hand-object

Lixin YANG 99 Dec 26, 2022
A set of tools to pre-calibrate and calibrate (multi-focus) plenoptic cameras (e.g., a Raytrix R12) based on the libpleno.

COMPOTE: Calibration Of Multi-focus PlenOpTic camEra. COMPOTE is a set of tools to pre-calibrate and calibrate (multifocus) plenoptic cameras (e.g., a

ComSEE - Computers that SEE 4 May 10, 2022
Decision Transformer: A brand new Offline RL Pattern

DecisionTransformer_StepbyStep Intro Decision Transformer: A brand new Offline RL Pattern. 这是关于NeurIPS 2021 热门论文Decision Transformer的复现。 👍 原文地址: Deci

Irving 14 Nov 22, 2022
Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation

Dynamic Neural Representational Decoders for High-Resolution Semantic Segmentation Requirements This repository needs mmsegmentation Training To train

20 May 28, 2022