A PyTorch implementation of SIN: Superpixel Interpolation Network

Related tags

Deep LearningSIN
Overview

SIN: Superpixel Interpolation Network

This is is a PyTorch implementation of the superpixel segmentation network introduced in our PRICAI-2021 paper:

SIN: Superpixel Interpolation Network

Prerequisites

The training code was mainly developed and tested with python 3.6, PyTorch 1.4, CUDA 10, and Ubuntu 18.04.

Demo

The demo script run_demo.py provides the superpixels with grid size 16 x 16 using our pre-trained model (in /pretrained_ckpt). Please feel free to provide your own images by copying them into /demo/inputs, and run

python run_demo.py --data_dir=./demo/inputs --data_suffix=jpg --output=./demo 

The results will be generate in a new folder under /demo called spixel_viz.

Data preparation

To generate training and test dataset, please first download the data from the original BSDS500 dataset, and extract it to . Then, run

cd data_preprocessing
python pre_process_bsd500.py --dataset=
   
     --dump_root=
    
     
python pre_process_bsd500_ori_sz.py --dataset=
     
       --dump_root=
      
       
cd ..

      
     
    
   

The code will generate three folders under the , named as /train, /val, and /test, and three .txt files record the absolute path of the images, named as train.txt, val.txt, and test.txt.

Training

Once the data is prepared, we should be able to train the model by running the following command

python main.py --data=
   
     --savepath=
    

    
   

if we wish to continue a train process or fine-tune from a pre-trained model, we can run

python main.py --data=
   
     --savepath=
    
      --pretrained=
      

     
    
   

The code will start from the recorded status, which includes the optimizer status and epoch number.

The training log can be viewed from the tensorboard session by running

tensorboard --logdir=
   
     --port=8888

   

Testing

We provide test code to generate: 1) superpixel visualization and 2) the.csv files for evaluation.

To test on BSDS500, run

python run_infer_bsds.py --data_dir=
   
     --output=
    
      --pretrained=
     

     
    
   

To test on NYUv2, please follow the intruction on the superpixel benchmark to generate the test dataset, and then run

python run_infer_nyu.py --data_dir=
   
     --output=
    
      --pretrained=
     

     
    
   

To test on other datasets, please first collect all the images into one folder , and then convert them into the same format (e.g. .png or .jpg) if necessary, and run

python run_demo.py --data_dir=
   
     --data_suffix=
    
      --output=
     
       --pretrained=
      

      
     
    
   

Superpixels with grid size 16 x 16 will be generated by default. To generate the superpixel with a different grid size, we simply need to resize the images into the approporate resolution before passing them through the code. Please refer to run_infer_nyu.py for the details.

Evaluation

We use the code from superpixel benchmark for superpixel evaluation. A detailed instruction is available in the repository, please

(1) download the code and build it accordingly;

(2) edit the variables $SUPERPIXELS, IMG_PATH and GT_PATH in /eval_spixel/my_eval.sh,

(3) run

cp /eval_spixel/my_eval.sh 
   
    /examples/bash/
cd  
    
     /examples/
bash my_eval.sh

    
   

several files should be generated in the map_csv folders in the corresponding test outputs;

(4) run

cd eval_spixel
python copy_resCSV.py --src=
   
     --dst=
    

    
   

(5) open /eval_spixel/plot_benchmark_curve.m , set the our1l_res_path as and modify the num_list according to the test setting. The default setting is for our BSDS500 test set.;

(6) run the plot_benchmark_curve.m, the ASA Score, CO Score, and BR-BP curve of our method should be shown on the screen. If you wish to compare our method with the others, you can first run the method and organize the data as we state above, and uncomment the code in the plot_benchmark_curve.m to generate a similar figure shown in our papers.

Acknowledgement

The code is implemented based on superpixel_fcn. We would like to express our sincere thanks to the contributors.

Cite

If you use SIN in your work please cite our paper:

@article{yuan2021sin,
title={SIN: Superpixel Interpolation Network},
author={Qing Yuan, Songfeng Lu, Yan Huang, Wuxin Sha},
booktitle={PRICAI},
year={2021}
}

A Confidence-based Iterative Solver of Depths and Surface Normals for Deep Multi-view Stereo

idn-solver Paper | Project Page This repository contains the code release of our ICCV 2021 paper: A Confidence-based Iterative Solver of Depths and Su

zhaowang 43 Nov 17, 2022
Unofficial implementation of "TTNet: Real-time temporal and spatial video analysis of table tennis" (CVPR 2020)

TTNet-Pytorch The implementation for the paper "TTNet: Real-time temporal and spatial video analysis of table tennis" An introduction of the project c

Nguyen Mau Dung 438 Dec 29, 2022
DeLighT: Very Deep and Light-Weight Transformers

DeLighT: Very Deep and Light-weight Transformers This repository contains the source code of our work on building efficient sequence models: DeFINE (I

Sachin Mehta 440 Dec 18, 2022
Implementation and replication of ProGen, Language Modeling for Protein Generation, in Jax

ProGen - (wip) Implementation and replication of ProGen, Language Modeling for Protein Generation, in Pytorch and Jax (the weights will be made easily

Phil Wang 71 Dec 01, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021]

Moiré Attack (MA): A New Potential Risk of Screen Photos [NeurIPS 2021] This repository is the official implementation of Moiré Attack (MA): A New Pot

Dantong Niu 22 Dec 24, 2022
A Python reference implementation of the CF data model

cfdm A Python reference implementation of the CF data model. References Compliance with FAIR principles Documentation https://ncas-cms.github.io/cfdm

NCAS CMS 25 Dec 13, 2022
This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》

CoraNet This is the 3D Implementation of 《Inconsistency-aware Uncertainty Estimation for Semi-supervised Medical Image Segmentation》 Environment pytor

25 Nov 08, 2022
Unsupervised Pre-training for Person Re-identification (LUPerson)

LUPerson Unsupervised Pre-training for Person Re-identification (LUPerson). The repository is for our CVPR2021 paper Unsupervised Pre-training for Per

143 Dec 24, 2022
Sleep staging from ECG, assisted with EEG

Sleep_Staging_Knowledge Distillation This codebase implements knowledge distillation approach for ECG based sleep staging assisted by EEG based sleep

2 Dec 12, 2022
Data labels and scripts for fastMRI.org

fastMRI+: Clinical pathology annotations for the fastMRI dataset The fastMRI dataset is a publicly available MRI raw (k-space) dataset. It has been us

Microsoft 51 Dec 22, 2022
METER: Multimodal End-to-end TransformER

METER Code and pre-trained models will be publicized soon. Citation @article{dou2021meter, title={An Empirical Study of Training End-to-End Vision-a

Zi-Yi Dou 257 Jan 06, 2023
Using this codebase as a tool for my own research. Making some modifications to the original repo for my own purposes.

For SwapNet Create a list.txt file containing all the images to process. This can be done with the GNU find command: find path/to/input/folder -name '

Andrew Jong 2 Nov 10, 2021
Little Ball of Fur - A graph sampling extension library for NetworKit and NetworkX (CIKM 2020)

Little Ball of Fur is a graph sampling extension library for Python. Please look at the Documentation, relevant Paper, Promo video and External Resour

Benedek Rozemberczki 619 Dec 14, 2022
Deep learning with TensorFlow and earth observation data.

Deep Learning with TensorFlow and EO Data Complete file set for Jupyter Book Autor: Development Seed Date: 04 October 2021 ISBN: (to come) Notebook tu

Development Seed 20 Nov 16, 2022
The offcial repository for 'CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos', SIGIR2022

CharacterBERT-DR The offcial repository for CharacterBERT and Self-Teaching for Improving the Robustness of Dense Retrievers on Queries with Typos, Sh

ielab 11 Nov 15, 2022
Bytedance Inc. 2.5k Jan 06, 2023
Benchmark library for high-dimensional HPO of black-box models based on Weighted Lasso regression

LassoBench LassoBench is a library for high-dimensional hyperparameter optimization benchmarks based on Weighted Lasso regression. Note: LassoBench is

Kenan Šehić 5 Mar 15, 2022