Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer.

Overview

Auto-Tuned Sim-to-Real Transfer

Offcial repository for the IEEE ICRA 2021 paper Auto-Tuned Sim-to-Real Transfer. The paper will be released shortly on arXiv.

This repository was forked from the CURL codebase.

Installation

Install mujoco, if it is not already installed.

Add this to bashrc:

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/home/olivia/.mujoco/mujoco200/bin

Apt-install these packages:

sudo apt-get install libosmesa6-dev
sudo apt-get install patchelf

All of the dependencies are in the conda_env.yml file. They can be installed manually or with the following command:

conda env create -f conda_env.yml

Enter the environments directory and run

pip install -e .

Instructions

Here is an example experiment run command.

CUDA_VISIBLE_DEVICES=0 python train.py --gpudevice 0 --id S3000 --outer_loop_version 3 --dr --start_outer_loop 5000 --train_sim_param_every 1 --prop_alpha --update_sim_param_from both --alpha 0.1 --mean_scale 1.75 --train_range_scale .5 --domain_name dmc_ball_in_cup --task_name catch --action_repeat 4 --range_scale .5 --scale_large_and_small --dr_option simple_dr --save_tb --use_img --encoder_type pixel --num_eval_episodes 1 --seed 1 --num_train_steps 1000000 --encoder_feature_dim 64 --num_layers 4 --num_filters 32 --sim_param_layers 2 --sim_param_units 400 --sim_param_lr .001 --prop_range_scale --prop_train_range_scale --separate_trunks --num_sim_param_updates 3 --save_video --eval_freq 2000 --num_eval_episodes 3 --save_model --save_buffer --no_train_policy
--outer_loop_version refers to the method by which we update simulation parameters. 1 means we update with regression, and 3 means binary classifier.
--scale_large_and_small means that half of the mean values in our simulation randomization will be randomly chosen to be too large, and the other half will be too small. If this flag is not provided, they will all be too large.
--mean_scale refers to the mean of the simulator distribution. A mean of k means that all simulation parameters are k times or 1/k times the true mean (randomly chosen for each param).
--range_scale refers to the range of the uniform distribution we use to collect samples to train the policy.
--train_range_scale refers to the range of the uniform distribution we use to collect samples to train the Search Param Model. This value is typically set >= to --range_scale.
--prop_range_scale and --prop_train_range_scale make the distribution ranges a scale multiple of the mean value rather than constants.

Check train.py for a full list of run commands.

During training, in your console, you should see printouts that look like:

| train | E: 221 | S: 28000 | D: 18.1 s | R: 785.2634 | BR: 3.8815 | A_LOSS: -305.7328 | CR_LOSS: 190.9854 | CU_LOSS: 0.0000
| train | E: 225 | S: 28500 | D: 18.6 s | R: 832.4937 | BR: 3.9644 | A_LOSS: -308.7789 | CR_LOSS: 126.0638 | CU_LOSS: 0.0000
| train | E: 229 | S: 29000 | D: 18.8 s | R: 683.6702 | BR: 3.7384 | A_LOSS: -311.3941 | CR_LOSS: 140.2573 | CU_LOSS: 0.0000
| train | E: 233 | S: 29500 | D: 19.6 s | R: 838.0947 | BR: 3.7254 | A_LOSS: -316.9415 | CR_LOSS: 136.5304 | CU_LOSS: 0.0000

Log abbreviation mapping:

train - training episode
E - total number of episodes 
S - total number of environment steps
D - duration in seconds to train 1 episode
R - mean episode reward
BR - average reward of sampled batch
A_LOSS - average loss of actor
CR_LOSS - average loss of critic
CU_LOSS - average loss of the CURL encoder

All data related to the run is stored in the specified working_dir. To enable model or video saving, use the --save_model or --save_video flags. For all available flags, inspect train.py. To visualize progress with tensorboard run:

tensorboard --logdir log --port 6006

and go to localhost:6006 in your browser. If you're running headlessly, try port forwarding with ssh.

For GPU accelerated rendering, make sure EGL is installed on your machine and set export MUJOCO_GL=egl. For environment troubleshooting issues, see the DeepMind control documentation.

Debugging common installation errors

Error message ERROR: GLEW initalization error: Missing GL version

  • Make sure /usr/lib/x86_64-linux-gnu/libGLEW.so and /usr/lib/x86_64-linux-gnu/libGL.so exist. If not, apt-install them.
  • Try trying adding the powerset of those two paths to LD_PRELOAD.

Error Shadow framebuffer is not complete, error 0x8cd7

  • Like above, make sure libglew and libGL are installed.
  • If /usr/lib/nvidia exists but '/usr/lib/nvidia-430/(or some other number) does not exist, runln -s /usr/lib/nvidia /usr/lib/nvidia-430`. It may have to match the number of your nvidia driver, I'm not sure.
  • Consider adding that symlink to LD_LIBRARY PATH.
  • If /usr/lib/nvidia doesn't exist, and neither does /usr/lib/nvidia-xxx, then create the folder /usr/lib/nvidia /usr/lib/nvidia-430.

Error message `RuntimeError: Failed to initialize OpenGL:

  • Make sure MUJOCO_GL is correct (egl for DMC, osmesa for anything else).
​TextWorld is a sandbox learning environment for the training and evaluation of reinforcement learning (RL) agents on text-based games.

TextWorld A text-based game generator and extensible sandbox learning environment for training and testing reinforcement learning (RL) agents. Also ch

Microsoft 983 Dec 23, 2022
Reinforcement learning framework and algorithms implemented in PyTorch.

Reinforcement learning framework and algorithms implemented in PyTorch.

Robotic AI & Learning Lab Berkeley 2.1k Jan 04, 2023
A PyTorch Implementation of Neural IMage Assessment

NIMA: Neural IMage Assessment This is a PyTorch implementation of the paper NIMA: Neural IMage Assessment (accepted at IEEE Transactions on Image Proc

yunxiaos 418 Dec 29, 2022
codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification

DLCF-DCA codes for paper Combining Dynamic Local Context Focus and Dependency Cluster Attention for Aspect-level sentiment classification. submitted t

15 Aug 30, 2022
A script that trains a model to recognize handwritten digits using the MNIST data set.

handwritten-digits-recognition A script that trains a model to recognize handwritten digits using the MNIST data set. Then it loads external files and

Hamza Sayih 1 Oct 30, 2021
Unbiased Learning To Rank Algorithms (ULTRA)

This is an Unbiased Learning To Rank Algorithms (ULTRA) toolbox, which provides a codebase for experiments and research on learning to rank with human annotated or noisy labels.

71 Dec 01, 2022
The reference baseline of final exam for XMU machine learning course

Mini-NICO Baseline The baseline is a reference method for the final exam of machine learning course. Requirements Installation we use /python3.7 /torc

JoaquinChou 3 Dec 29, 2021
DTCN SMP Challenge - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
Pytorch codes for "Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation"

Self-Supervised-MVS This repository is the official PyTorch implementation of our AAAI 2021 paper: "Self-supervised Multi-view Stereo via Effective Co

hongbin_xu 127 Jan 04, 2023
Code for the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness"

DU-VAE This is the pytorch implementation of the paper "Regularizing Variational Autoencoder with Diversity and Uncertainty Awareness" Acknowledgement

Dazhong Shen 4 Oct 19, 2022
Code for T-Few from "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learning"

T-Few This repository contains the official code for the paper: "Few-Shot Parameter-Efficient Fine-Tuning is Better and Cheaper than In-Context Learni

220 Dec 31, 2022
Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation

Proposal, Tracking and Segmentation (PTS): A Cascaded Network for Video Object Segmentation By Qiang Zhou*, Zilong Huang*, Lichao Huang, Han Shen, Yon

Forest 117 Apr 01, 2022
Semantic Segmentation Architectures Implemented in PyTorch

pytorch-semseg Semantic Segmentation Algorithms Implemented in PyTorch This repository aims at mirroring popular semantic segmentation architectures i

Meet Shah 3.3k Dec 29, 2022
Pytorch implementation of SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation

SenFormer: Efficient Self-Ensemble Framework for Semantic Segmentation Efficient Self-Ensemble Framework for Semantic Segmentation by Walid Bousselham

61 Dec 26, 2022
Reproduces the results of the paper "Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable domain decomposition approach for solving differential equations".

Finite basis physics-informed neural networks (FBPINNs) This repository reproduces the results of the paper Finite Basis Physics-Informed Neural Netwo

Ben Moseley 65 Dec 28, 2022
Instantaneous Motion Generation for Robots and Machines.

Ruckig Instantaneous Motion Generation for Robots and Machines. Ruckig generates trajectories on-the-fly, allowing robots and machines to react instan

Berscheid 374 Dec 23, 2022
Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time.

BBB Face Recognizer Face recognition system using MTCNN, FACENET, SVM and FAST API to track participants of Big Brother Brasil in real time. Instalati

Rafael Azevedo 232 Dec 24, 2022
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
A forwarding MPI implementation that can use any other MPI implementation via an MPI ABI

MPItrampoline MPI wrapper library: MPI trampoline library: MPI integration tests: MPI is the de-facto standard for inter-node communication on HPC sys

Erik Schnetter 31 Dec 22, 2022