Pytorch Lightning Implementation of SC-Depth Methods.

Overview

SC_Depth_pl:

This is a pytorch lightning implementation of SC-Depth (V1, V2) for self-supervised learning of monocular depth from video.

In the V1 (IJCV 2021 & NeurIPS 2019), we propose (i) geometry consistency loss for scale-consistent depth prediction over video and (ii) self-discovered mask for detecting and removing dynamic regions during training towards higher accuracy. We also validate the predicted depth in the Visual SLAM scenario.

In the V2 (TPMAI 2022), we propose auto-recitify network (ARN) to remove relative image rotation in hand-held camera captured videos, e.g., some indoor datasets. We show that the proposed ARN, which is self-supervised trained in an end-to-end fashion, greatly eases the training and significantly boosts the performance.

Install

conda create -n sc_depth_env python=3.6
conda activate sc_depth_env
conda install pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
pip install -r requirements.txt

Dataset

We preprocess all existing video datasets to the following general video format for training and testing:

Dataset
  -Training
    --Scene0000
      ---*.jpg (list of images)
      ---cam.txt (3x3 intrinsic)
      ---depth (a folder containing gt depths, optional for validation)
    --Scene0001
    ...
    train.txt (containing training scene names)
    val.txt (containing validation scene names)
  -Testing
    --color (containg testing images)
    --depth (containg ground truth depths)

You can convert it by yourself (on your own video data) or download our pre-processed standard datasets:

[kitti_raw] [nyu]

Training

We provide "scripts/run_train.sh", which shows how to train on kitti and nyu.

Testing

We provide "scripts/run_test.sh", which shows how test on kitti and nyu.

Inference

We provide "scripts/run_inference.sh", which shows how to save depths (.npy) and visualization results (.jpg).

Pretrained models

We provide pretrained models on kitti and nyu datasets. You need to uncompress it and put it into "ckpt" folder. If you run the "scripts/run_test.sh" with the pretrained model (fix the path before running), you should get the following results:

[kitti_scv1_model]:

Models Abs Rel Sq Rel Log10 RMSE RMSE(log) Acc.1 Acc.2 Acc.3
resnet18 0.119 0.878 0.053 4.987 0.196 0.859 0.956 0.981

[nyu_scv2_model]:

Models Abs Rel Sq Rel Log10 RMSE RMSE(log) Acc.1 Acc.2 Acc.3
resnet18 0.142 0.112 0.061 0.554 0.186 0.808 0.951 0.987

References

SC-DepthV1:

Unsupervised Scale-consistent Depth Learning from Video (IJCV 2021)
Jia-Wang Bian, Huangying Zhan, Naiyan Wang, Zhichao Li, Le Zhang, Chunhua Shen, Ming-Ming Cheng, Ian Reid [paper]

@article{bian2021ijcv, 
  title={Unsupervised Scale-consistent Depth Learning from Video}, 
  author={Bian, Jia-Wang and Zhan, Huangying and Wang, Naiyan and Li, Zhichao and Zhang, Le and Shen, Chunhua and Cheng, Ming-Ming and Reid, Ian}, 
  journal= {International Journal of Computer Vision (IJCV)}, 
  year={2021} 
}

which is an extension of previous conference version: Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video (NeurIPS 2019)
Jia-Wang Bian, Zhichao Li, Naiyan Wang, Huangying Zhan, Chunhua Shen, Ming-Ming Cheng, Ian Reid [paper]

@inproceedings{bian2019neurips,
  title={Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video},
  author={Bian, Jiawang and Li, Zhichao and Wang, Naiyan and Zhan, Huangying and Shen, Chunhua and Cheng, Ming-Ming and Reid, Ian},
  booktitle = {Advances in Neural Information Processing Systems (NeurIPS)},
  year={2019}
}

SC-DepthV2:

Auto-Rectify Network for Unsupervised Indoor Depth Estimation (TPAMI 2022)
Jia-Wang Bian, Huangying Zhan, Naiyan Wang, Tat-Jun Chin, Chunhua Shen, Ian Reid [paper]

@article{bian2021tpami, 
  title={Auto-Rectify Network for Unsupervised Indoor Depth Estimation}, 
  author={Bian, Jia-Wang and Zhan, Huangying and Wang, Naiyan and Chin, Tat-Jin and Shen, Chunhua and Reid, Ian}, 
  journal= {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)}, 
  year={2021} 
}
Owner
JiaWang Bian
PHD Student
JiaWang Bian
Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21

Skeletal-GNN Code for "Learning Skeletal Graph Neural Networks for Hard 3D Pose Estimation" ICCV'21 Various deep learning techniques have been propose

37 Oct 23, 2022
Notebook and code to synthesize complex and highly dimensional datasets using Gretel APIs.

Gretel Trainer This code is designed to help users successfully train synthetic models on complex datasets with high row and column counts. The code w

Gretel.ai 24 Nov 03, 2022
[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

InsGen - Data-Efficient Instance Generation from Instance Discrimination Data-Efficient Instance Generation from Instance Discrimination Ceyuan Yang,

GenForce: May Generative Force Be with You 93 Dec 25, 2022
Generic ecosystem for feature extraction from aerial and satellite imagery

Note: Robosat is neither maintained not actively developed any longer by Mapbox. See this issue. The main developers (@daniel-j-h, @bkowshik) are no l

Mapbox 1.9k Jan 06, 2023
Convolutional neural network web app trained to track our infant’s sleep schedule using our Google Nest camera.

Machine Learning Sleep Schedule Tracker What is it? Convolutional neural network web app trained to track our infant’s sleep schedule using our Google

g-parki 7 Jul 15, 2022
Language Models Can See: Plugging Visual Controls in Text Generation

Language Models Can See: Plugging Visual Controls in Text Generation Authors: Yixuan Su, Tian Lan, Yahui Liu, Fangyu Liu, Dani Yogatama, Yan Wang, Lin

Yixuan Su 195 Dec 22, 2022
DeepLab-ResNet rebuilt in TensorFlow

DeepLab-ResNet-TensorFlow This is an (re-)implementation of DeepLab-ResNet in TensorFlow for semantic image segmentation on the PASCAL VOC dataset. Fr

Vladimir 1.2k Nov 04, 2022
The official implementation of paper Siamese Transformer Pyramid Networks for Real-Time UAV Tracking, accepted by WACV22

SiamTPN Introduction This is the official implementation of the SiamTPN (WACV2022). The tracker intergrates pyramid feature network and transformer in

Robotics and Intelligent Systems Control @ NYUAD 29 Jan 08, 2023
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
The Power of Scale for Parameter-Efficient Prompt Tuning

The Power of Scale for Parameter-Efficient Prompt Tuning Implementation of soft embeddings from https://arxiv.org/abs/2104.08691v1 using Pytorch and H

Kip Parker 208 Dec 30, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
CATE: Computation-aware Neural Architecture Encoding with Transformers

CATE: Computation-aware Neural Architecture Encoding with Transformers Code for paper: CATE: Computation-aware Neural Architecture Encoding with Trans

16 Dec 27, 2022
Code for the IJCAI 2021 paper "Structure Guided Lane Detection"

SGNet Project for the IJCAI 2021 paper "Structure Guided Lane Detection" Abstract Recently, lane detection has made great progress with the rapid deve

Jinming Su 27 Dec 08, 2022
Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality".

personalized-breath Repo for the ACMMM20 submission: "Personalized breath based biometric authentication with wearable multimodality". Guideline To ex

Manh-Ha Bui 2 Nov 15, 2021
Code for "Infinitely Deep Bayesian Neural Networks with Stochastic Differential Equations"

Infinitely Deep Bayesian Neural Networks with SDEs This library contains JAX and Pytorch implementations of neural ODEs and Bayesian layers for stocha

Winnie Xu 95 Nov 26, 2021
Fast convergence of detr with spatially modulated co-attention

Fast convergence of detr with spatially modulated co-attention Usage There are no extra compiled components in SMCA DETR and package dependencies are

peng gao 135 Dec 07, 2022
[ICLR 2021] HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark

HW-NAS-Bench: Hardware-Aware Neural Architecture Search Benchmark Accepted as a spotlight paper at ICLR 2021. Table of content File structure Prerequi

72 Jan 03, 2023
FPGA: Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification

FPGA & FreeNet Fast Patch-Free Global Learning Framework for Fully End-to-End Hyperspectral Image Classification by Zhuo Zheng, Yanfei Zhong, Ailong M

Zhuo Zheng 92 Jan 03, 2023
Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework

This repo is the official implementation of "Instant-Teaching: An End-to-End Semi-Supervised Object Detection Framework". @inproceedings{zhou2021insta

34 Dec 31, 2022
VOLO: Vision Outlooker for Visual Recognition

VOLO: Vision Outlooker for Visual Recognition, arxiv This is a PyTorch implementation of our paper. We present Vision Outlooker (VOLO). We show that o

Sea AI Lab 876 Dec 09, 2022