Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations

Overview

HierarchicyBandit

Introduction

This is the implementation of WSDM 2022 paper : Show Me the Whole World: Towards Entire Item Space Exploration for Interactive Personalized Recommendations
The reference codes for HCB and pHCB, which are based on three different base bandit algorithms.

  1. LinUCB from A contextual-bandit approach to personalized news article recommendation
  2. epsilon-Greedy [This strategy, with random exploration on an epsilon fraction of the traffic and greedy exploitation on the rest]
  3. Thompson Sampling from Thompson Sampling for Contextual Bandits with Linear Payoffs

Files in the folder

  • data/
    • MIND/ and TaoBao/
      • item_info.pkl: processed item file, including item id, item feature and embeddings for simulator;
      • user_info.pkl: processed user file, including user id, and embeddings for simulator;
      • item_info_ts.pkl: processed item file for Thompson sampling;
  • algs/: implementations of PCB and pHCB based on LinUCB.
  • algsE/: implementations of PCB and pHCB based on epsilon-Greedy.
  • algsTS/: implementations of PCB and pHCB based on Thompson Sampling.

Note

  1. Before testing the algorithms, you should modify the settings in config.py.
  2. For thompson sampling, we provide another 16 dimensonal feature vectors to run the experiments, since it can be faster . The original feature vectors are also work with the algorithms.
  3. the user_info.pkl and item_info.pkl is formated as dictionary type.
  4. The implementation of ConUCB is released at ConUCB. HMAB and ICTRUCB are specical case of CB-Category and CB-Leaf.

Usage:

Download the HierarchicyBandit.zip and unzip. You will get five folders, they are algs/, algsE/, algsTS/, data/, and logger/.

Parameters:
The config.py file contains:

dataset: is the dataset used in the experiment, it can be 'MIND' or 'TaoBao';  
T: the number of rounds of each bandit algorithm;  
k: the number of items recommended to user at each round, default is 1;  
activate_num: the hyper-papamter p for pHCB;  
activate_prob: the hyper-papamter q for pHCB;  
epsilon: the epsilon value for greedy-based algorithms;  
new_tree_file: the tree file name;  
noise_scale: the standard deviation of environmental noise;  
keep_prob: sample ratio; default is 1.0, which means testing all users.
linucb_para: the hyper-parameters for linucb algorithm;
ts_para: the hyper-parameters for thompson sampling algorithm;
poolsize: the size of candidate pool;
random_choice: whether random choice an item to user;   

Environment: python 3.6 with Anaconda To run the bandit codes based on LinUCB:

$ cd algs
$ python simulator_multi_process.py

To run the bandit codes based on epsilon-Greedy:

$ cd algsE
$ python simulator_multi_process.py

To run the bandit codes based on Thompson sampling:

$ cd algsTS
$ python simulator_multi_process.py
Owner
yu song
I am a master at Huazhong University of Science and Technology(HUST)
yu song
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
A general framework for deep learning experiments under PyTorch based on pytorch-lightning

torchx Torchx is a general framework for deep learning experiments under PyTorch based on pytorch-lightning. TODO list gan-like training wrapper text

Yingtian Liu 6 Mar 17, 2022
Codes for the compilation and visualization examples to the HIF vegetation dataset

High-impedance vegetation fault dataset This repository contains the codes that compile the "Vegetation Conduction Ignition Test Report" data, which a

1 Dec 12, 2021
Range Image-based LiDAR Localization for Autonomous Vehicles Using Mesh Maps

Range Image-based 3D LiDAR Localization This repo contains the code for our ICRA2021 paper: Range Image-based LiDAR Localization for Autonomous Vehicl

Photogrammetry & Robotics Bonn 208 Dec 15, 2022
Code for Referring Image Segmentation via Cross-Modal Progressive Comprehension, CVPR2020.

CMPC-Refseg Code of our CVPR 2020 paper Referring Image Segmentation via Cross-Modal Progressive Comprehension. Shaofei Huang*, Tianrui Hui*, Si Liu,

spyflying 55 Dec 01, 2022
Pydantic models for pywttr and aiopywttr.

Pydantic models for pywttr and aiopywttr.

Almaz 2 Dec 08, 2022
Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression

Regression Transformer Codebase to experiment with a hybrid Transformer that combines conditional sequence generation with regression . Development se

International Business Machines 27 Jan 05, 2023
In this project, we'll be making our own screen recorder in Python using some libraries.

Screen Recorder in Python Project Description: In this project, we'll be making our own screen recorder in Python using some libraries. Requirements:

Hassan Shahzad 4 Jan 24, 2022
Python version of the amazing Reaction Mechanism Generator (RMG).

Reaction Mechanism Generator (RMG) Description This repository contains the Python version of Reaction Mechanism Generator (RMG), a tool for automatic

Reaction Mechanism Generator 284 Dec 27, 2022
Fast Style Transfer in TensorFlow

Fast Style Transfer in TensorFlow Add styles from famous paintings to any photo in a fraction of a second! You can even style videos! It takes 100ms o

Jefferson 5 Oct 24, 2021
Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286

Pytorch-DPPO Pytorch implementation of Distributed Proximal Policy Optimization: https://arxiv.org/abs/1707.02286 Using PPO with clip loss (from https

Alexis David Jacq 163 Dec 26, 2022
Pytorch library for seismic data augmentation

Pytorch library for seismic data augmentation

Artemii Novoselov 27 Nov 22, 2022
Flower classification model that classifies flowers in 10 classes made using transfer learning (~85% accuracy).

flower-classification-inceptionV3 Flower classification model that classifies flowers in 10 classes. Training and validation are done using a pre-anot

Ivan R. Mršulja 1 Dec 12, 2021
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
Automated image registration. Registrationimation was too much of a mouthful.

alignimation Automated image registration. Registrationimation was too much of a mouthful. This repo contains the code used for my blog post Alignimat

Ethan Rosenthal 9 Oct 13, 2022
Breast Cancer Detection 🔬 ITI "AI_Pro" Graduation Project

BreastCancerDetection - This program is designed to predict two severity of abnormalities associated with breast cancer cells: benign and malignant. Mammograms from MIAS is preprocessed and features

6 Nov 29, 2022
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
Official implementation of Pixel-Level Bijective Matching for Video Object Segmentation

BMVOS This is the official implementation of Pixel-Level Bijective Matching for Video Object Segmentation, to appear in WACV 2022. @article{cho2021pix

Suhwan Cho 13 Dec 14, 2022
SGPT: Multi-billion parameter models for semantic search

SGPT: Multi-billion parameter models for semantic search This repository contains code, results and pre-trained models for the paper SGPT: Multi-billi

Niklas Muennighoff 182 Dec 29, 2022