A Python library for differentiable optimal control on accelerators.

Related tags

Deep Learningtrajax
Overview

trajax

A Python library for differentiable optimal control on accelerators.

Trajax builds on JAX and hence code written with Trajax supports JAX's transformations. In particular, Trajax's solvers:

  1. Are automatically efficiently differentiable, via jax.grad.
  2. Scale up to parallel instances via jax.vmap and jax.pmap.
  3. Can run on CPUs, GPUs, and TPUs without code changes, and support end-to-end compilation with jax.jit.
  4. Are made available from Python, written with NumPy.

In Trajax, differentiation through the solution of a trajectory optimization problem is done more efficiently than by differentiating the solver implementation directly. Specifically, Trajax defines custom differentiation routines for its solvers. It registers these with JAX so that they are picked up whenever using JAX's autodiff features (e.g. jax.grad) to differentiate functions that call a Trajax solver.

This is a research project, not an official Google product.

Trajax is currently a work in progress, maintained by a few individuals at Google Research. While we are actively using Trajax in our own research projects, expect there to be bugs and rough edges compared to commercially available solvers.

Trajectory optimization and optimal control

We consider classical optimal control tasks concerning optimizing trajectories of a given discrete time dynamical system by solving the following problem. Given a cost function c, dynamics function f, and initial state x0, the goal is to compute:

argmin(lambda X, U: sum(c(X[t], U[t], t) for t in range(T)) + c_final(X[T]))

subject to the constraint that X[0] == x0 and that:

all(X[t + 1] == f(X[t], U[t], t) for t in range(T))

There are many resources for more on trajectory optimization, including Dynamic Programming and Optimal Control by Dimitri Bertsekas and Underactuated Robotics by Russ Tedrake.

API

In describing the API, it will be useful to abbreviate a JAX/NumPy floating point ndarray of shape (a, b, …) as a type denoted F[a, b, …]. Assume n is the state dimension, d is the control dimension, and T is the time horizon.

Problem setup convention/signature

Setting up a problem requires writing two functions, cost and dynamics, with type signatures:

cost(state: F[n], action: F[d], time_step: int) : float
dynamics(state: F[n], action: F[d], time_step: int) : F[n]

Note that even if a dimension n or d is 1, the corresponding state or action representation is still a rank-1 ndarray (i.e. a vector, of length 1).

Because Trajax uses JAX, the cost and dynamics functions must be written in a functional programming style as required by JAX. See the JAX readme for details on writing JAX-friendly functional code. By and large, functions that have no side effects and that use jax.numpy in place of numpy are likely to work.

Solvers

If we abbreviate the type of the above two functions as CostFn and DynamicsFn, then our solvers have the following type signature prefix in common:

solver(cost: CostFn, dynamics: DynamicsFn, initial_state: F[n], initial_actions: F[T, d], *solver_args, **solver_kwargs): SolverOutput

SolverOutput is a tuple of (F[T + 1, n], F[T, d], float, *solver_outputs). The first three tuple components represent the optimal state trajectory, optimal control sequence, and the optimal objective value achieved, respectively. The remaining *solver_outputs are specific to the particular solver (such as number of iterations, norm of the final gradient, etc.).

There are currently four solvers provided: ilqr, scipy_minimize, cem, and random_shooting. Each extends the signatures above with solver-specific arguments and output values. Details are provided in each solver function's docstring.

Underlying the ilqr implementation is a time-varying LQR routine, which solves a special case of the above problem, where costs are convex quadratic and dynamics are affine. To capture this, both are represented as matrices. This routine is also made available as tvlqr.

Objectives

One might want to write a custom solver, or work with an objective function for any other reason. To that end, Trajax offers the optimal control objective in the form of an API function:

objective(cost: CostFn, dynamics: DynamicsFn, initial_state: F[n], actions: F[T, d]): float

Combining this function with JAX's autodiff capabilities offers, for example, a starting point for writing a first-order custom solver. For example:

def improve_controls(cost, dynamics, U, x0, eta, num_iters):
  grad_fn = jax.grad(trajax.objective, argnums=(2,))
  for i in range(num_iters):
    U = U - eta * grad_fn(cost, dynamics, U, x0)
  return U

The solvers provided by Trajax are actually built around this objective function. For instance, the scipy_minimize solver simply calls scipy.minimize.minimize with the gradient and Hessian-vector product functions derived from objective using jax.grad and jax.hessian.

Limitations

​​Just as Trajax inherits the autodiff, compilation, and parallelism features of JAX, it also inherits its corresponding limitations. Functions such as the cost and dynamics given to a solver must be written using jax.numpy in place of standard numpy, and must conform to a functional style; see the JAX readme. Due to the complexity of trajectory optimizer implementations, initial compilation times can be long.

Owner
Google
Google ❤️ Open Source
Google
Discovering Explanatory Sentences in Legal Case Decisions Using Pre-trained Language Models.

Statutory Interpretation Data Set This repository contains the data set created for the following research papers: Savelka, Jaromir, and Kevin D. Ashl

17 Dec 23, 2022
Video-face-extractor - Video face extractor with Python

Python face extractor Setup Create the srcvideos and faces directories Put your

2 Feb 03, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
DCA - Official Python implementation of Delaunay Component Analysis algorithm

Delaunay Component Analysis (DCA) Official Python implementation of the Delaunay

Petra Poklukar 9 Sep 06, 2022
Unicorn can be used for performance analyses of highly configurable systems with causal reasoning

Unicorn can be used for performance analyses of highly configurable systems with causal reasoning. Users or developers can query Unicorn for a performance task.

AISys Lab 27 Jan 05, 2023
Implementation of the paper "Shapley Explanation Networks"

Shapley Explanation Networks Implementation of the paper "Shapley Explanation Networks" at ICLR 2021. Note that this repo heavily uses the experimenta

68 Dec 27, 2022
Wider-Yolo Kütüphanesi ile Yüz Tespit Uygulamanı Yap

WIDER-YOLO : Yüz Tespit Uygulaması Yap Wider-Yolo Kütüphanesinin Kullanımı 1. Wider Face Veri Setini İndir Train Dataset Val Dataset Test Dataset Not:

Kadir Nar 6 Aug 22, 2022
A visualization tool to show a TensorFlow's graph like TensorBoard

tfgraphviz tfgraphviz is a module to visualize a TensorFlow's data flow graph like TensorBoard using Graphviz. tfgraphviz enables to provide a visuali

44 Nov 09, 2022
[CVPR 2022] Unsupervised Image-to-Image Translation with Generative Prior

GP-UNIT - Official PyTorch Implementation This repository provides the official PyTorch implementation for the following paper: Unsupervised Image-to-

Shuai Yang 125 Jan 03, 2023
PiRank: Learning to Rank via Differentiable Sorting

PiRank: Learning to Rank via Differentiable Sorting This repository provides a reference implementation for learning PiRank-based models as described

54 Dec 17, 2022
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
Hierarchical Attentive Recurrent Tracking

Hierarchical Attentive Recurrent Tracking This is an official Tensorflow implementation of single object tracking in videos by using hierarchical atte

Adam Kosiorek 147 Aug 07, 2021
Dyalog-apl-docset - Dyalog APL Dash Docset Generator

Dyalog APL Dash Docset Generator o alasa e kili sona kepeken tenpo lili a A Dash

Maciej Goszczycki 1 Jan 10, 2022
Official implementation of CVPR2020 paper "Deep Generative Model for Robust Imbalance Classification"

Deep Generative Model for Robust Imbalance Classification Deep Generative Model for Robust Imbalance Classification Xinyue Wang, Yilin Lyu, Liping Jin

9 Nov 01, 2022
[Official] Exploring Temporal Coherence for More General Video Face Forgery Detection(ICCV 2021)

Exploring Temporal Coherence for More General Video Face Forgery Detection(FTCN) Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, Fang Wen Accepted b

57 Dec 28, 2022
Code for the Paper "Diffusion Models for Handwriting Generation"

Code for the Paper "Diffusion Models for Handwriting Generation"

62 Dec 21, 2022
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
Image Classification - A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

A research on image classification and auto insurance claim prediction, a systematic experiments on modeling techniques and approaches

0 Jan 23, 2022
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability

This is the official repository of the paper: CR-FIQA: Face Image Quality Assessment by Learning Sample Relative Classifiability A private copy of the

Fadi Boutros 33 Dec 31, 2022