[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Related tags

Deep LearningSpCL
Overview

Python >=3.5 PyTorch >=1.0

Self-paced Contrastive Learning (SpCL)

The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID, which is accepted by NeurIPS-2020. SpCL achieves state-of-the-art performances on both unsupervised domain adaptation tasks and unsupervised learning tasks for object re-ID, including person re-ID and vehicle re-ID.

framework

Updates

[2020-10-13] All trained models for the camera-ready version have been updated, see Trained Models for details.

[2020-09-25] SpCL has been accepted by NeurIPS on the condition that experiments on DukeMTMC-reID dataset should be removed, since the dataset has been taken down and should no longer be used.

[2020-07-01] We did the code refactoring to support distributed training, stronger performances and more features. Please see OpenUnReID.

Requirements

Installation

git clone https://github.com/yxgeee/SpCL.git
cd SpCL
python setup.py develop

Prepare Datasets

cd examples && mkdir data

Download the person datasets Market-1501, MSMT17, PersonX, and the vehicle datasets VehicleID, VeRi-776, VehicleX. Then unzip them under the directory like

SpCL/examples/data
├── market1501
│   └── Market-1501-v15.09.15
├── msmt17
│   └── MSMT17_V1
├── personx
│   └── PersonX
├── vehicleid
│   └── VehicleID -> VehicleID_V1.0
├── vehiclex
│   └── AIC20_ReID_Simulation -> AIC20_track2/AIC20_ReID_Simulation
└── veri
    └── VeRi -> VeRi_with_plate

Prepare ImageNet Pre-trained Models for IBN-Net

When training with the backbone of IBN-ResNet, you need to download the ImageNet-pretrained model from this link and save it under the path of logs/pretrained/.

mkdir logs && cd logs
mkdir pretrained

The file tree should be

SpCL/logs
└── pretrained
    └── resnet50_ibn_a.pth.tar

ImageNet-pretrained models for ResNet-50 will be automatically downloaded in the python script.

Training

We utilize 4 GTX-1080TI GPUs for training. Note that

  • The training for SpCL is end-to-end, which means that no source-domain pre-training is required.
  • use --iters 400 (default) for Market-1501 and PersonX datasets, and --iters 800 for MSMT17, VeRi-776, VehicleID and VehicleX datasets;
  • use --width 128 --height 256 (default) for person datasets, and --height 224 --width 224 for vehicle datasets;
  • use -a resnet50 (default) for the backbone of ResNet-50, and -a resnet_ibn50a for the backbone of IBN-ResNet.

Unsupervised Domain Adaptation

To train the model(s) in the paper, run this command:

CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py \
  -ds $SOURCE_DATASET -dt $TARGET_DATASET --logs-dir $PATH_OF_LOGS

Some examples:

### PersonX -> Market-1501 ###
# use all default settings is ok
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py \
  -ds personx -dt market1501 --logs-dir logs/spcl_uda/personx2market_resnet50

### Market-1501 -> MSMT17 ###
# use all default settings except for iters=800
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py --iters 800 \
  -ds market1501 -dt msmt17 --logs-dir logs/spcl_uda/market2msmt_resnet50

### VehicleID -> VeRi-776 ###
# use all default settings except for iters=800, height=224 and width=224
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py --iters 800 --height 224 --width 224 \
  -ds vehicleid -dt veri --logs-dir logs/spcl_uda/vehicleid2veri_resnet50

Unsupervised Learning

To train the model(s) in the paper, run this command:

CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py \
  -d $DATASET --logs-dir $PATH_OF_LOGS

Some examples:

### Market-1501 ###
# use all default settings is ok
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py \
  -d market1501 --logs-dir logs/spcl_usl/market_resnet50

### MSMT17 ###
# use all default settings except for iters=800
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py --iters 800 \
  -d msmt17 --logs-dir logs/spcl_usl/msmt_resnet50

### VeRi-776 ###
# use all default settings except for iters=800, height=224 and width=224
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py --iters 800 --height 224 --width 224 \
  -d veri --logs-dir logs/spcl_usl/veri_resnet50

Evaluation

We utilize 1 GTX-1080TI GPU for testing. Note that

  • use --width 128 --height 256 (default) for person datasets, and --height 224 --width 224 for vehicle datasets;
  • use --dsbn for domain adaptive models, and add --test-source if you want to test on the source domain;
  • use -a resnet50 (default) for the backbone of ResNet-50, and -a resnet_ibn50a for the backbone of IBN-ResNet.

Unsupervised Domain Adaptation

To evaluate the domain adaptive model on the target-domain dataset, run:

CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn \
  -d $DATASET --resume $PATH_OF_MODEL

To evaluate the domain adaptive model on the source-domain dataset, run:

CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn --test-source \
  -d $DATASET --resume $PATH_OF_MODEL

Some examples:

### Market-1501 -> MSMT17 ###
# test on the target domain
CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn \
  -d msmt17 --resume logs/spcl_uda/market2msmt_resnet50/model_best.pth.tar
# test on the source domain
CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn --test-source \
  -d market1501 --resume logs/spcl_uda/market2msmt_resnet50/model_best.pth.tar

Unsupervised Learning

To evaluate the model, run:

CUDA_VISIBLE_DEVICES=0 \
python examples/test.py \
  -d $DATASET --resume $PATH

Some examples:

### Market-1501 ###
CUDA_VISIBLE_DEVICES=0 \
python examples/test.py \
  -d market1501 --resume logs/spcl_usl/market_resnet50/model_best.pth.tar

Trained Models

framework

You can download the above models in the paper from [Google Drive] or [Baidu Yun](password: w3l9).

Citation

If you find this code useful for your research, please cite our paper

@inproceedings{ge2020selfpaced,
    title={Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID},
    author={Yixiao Ge and Feng Zhu and Dapeng Chen and Rui Zhao and Hongsheng Li},
    booktitle={Advances in Neural Information Processing Systems},
    year={2020}
}
Owner
Yixiao Ge
Ph.D Candidate @ CUHK-MMLab
Yixiao Ge
A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data

A Parameter-free Deep Embedded Clustering Method for Single-cell RNA-seq Data Overview Clustering analysis is widely utilized in single-cell RNA-seque

AI-Biomed @NSCC-gz 3 May 08, 2022
Finding Donors for CharityML

Finding-Donors-for-CharityML - Investigated factors that affect the likelihood of charity donations being made based on real census data.

Moamen Abdelkawy 1 Dec 30, 2021
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
Code for CPM-2 Pre-Train

CPM-2 Pre-Train Pre-train CPM-2 此分支为110亿非 MoE 模型的预训练代码,MoE 模型的预训练代码请切换到 moe 分支 CPM-2技术报告请参考link。 0 模型下载 请在智源资源下载页面进行申请,文件介绍如下: 文件名 描述 参数大小 100000.tar

Tsinghua AI 136 Dec 28, 2022
Numerical Methods with Python, Numpy and Matplotlib

Numerical Bric-a-Brac Collections of numerical techniques with Python and standard computational packages (Numpy, SciPy, Numba, Matplotlib ...). Diffe

Vincent Bonnet 10 Dec 20, 2021
Code for our ICASSP 2021 paper: SA-Net: Shuffle Attention for Deep Convolutional Neural Networks

SA-Net: Shuffle Attention for Deep Convolutional Neural Networks (paper) By Qing-Long Zhang and Yu-Bin Yang [State Key Laboratory for Novel Software T

Qing-Long Zhang 199 Jan 08, 2023
Image Segmentation Animation using Quadtree concepts.

QuadTree Image Segmentation Animation using QuadTree concepts. Usage usage: quad.py [-h] [-fps FPS] [-i ITERATIONS] [-ws WRITESTART] [-b] [-img] [-s S

Alex Eidt 29 Dec 25, 2022
Multiband spectro-radiometric satellite image analysis with K-means cluster algorithm

Multi-band Spectro Radiomertric Image Analysis with K-means Cluster Algorithm Overview Multi-band Spectro Radiomertric images are images comprising of

Chibueze Henry 6 Mar 16, 2022
Expand human face editing via Global Direction of StyleCLIP, especially to maintain similarity during editing.

Oh-My-Face This project is based on StyleCLIP, RIFE, and encoder4editing, which aims to expand human face editing via Global Direction of StyleCLIP, e

AiLin Huang 51 Nov 17, 2022
chen2020iros: Learning an Overlap-based Observation Model for 3D LiDAR Localization.

Overlap-based 3D LiDAR Monte Carlo Localization This repo contains the code for our IROS2020 paper: Learning an Overlap-based Observation Model for 3D

Photogrammetry & Robotics Bonn 219 Dec 15, 2022
AQP is a modular pipeline built to enable the comparison and testing of different quality metric configurations.

Audio Quality Platform - AQP An Open Modular Python Platform for Objective Speech and Audio Quality Metrics AQP is a highly modular pipeline designed

Jack Geraghty 24 Oct 01, 2022
Official implementation of "Motif-based Graph Self-Supervised Learning forMolecular Property Prediction"

Motif-based Graph Self-Supervised Learning for Molecular Property Prediction Official Pytorch implementation of NeurIPS'21 paper "Motif-based Graph Se

zaixi 71 Dec 20, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Dec 26, 2022
SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis

SCI-AIDE : High-fidelity Few-shot Histopathology Image Synthesis for Rare Cancer Diagnosis Pretrained Models In this work, we created synthetic tissue

Emirhan Kurtuluş 1 Feb 07, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary Differential Equations

ODE GAN (Prototype) in PyTorch Partial implementation of ODE-GAN technique from the paper Training Generative Adversarial Networks by Solving Ordinary

Somshubra Majumdar 15 Feb 10, 2022
[CVPR 2022] CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation

CoTTA Code for our CVPR 2022 paper Continual Test-Time Domain Adaptation Prerequisite Please create and activate the following conda envrionment. To r

Qin Wang 87 Jan 08, 2023