[NeurIPS-2020] Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID.

Related tags

Deep LearningSpCL
Overview

Python >=3.5 PyTorch >=1.0

Self-paced Contrastive Learning (SpCL)

The official repository for Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID, which is accepted by NeurIPS-2020. SpCL achieves state-of-the-art performances on both unsupervised domain adaptation tasks and unsupervised learning tasks for object re-ID, including person re-ID and vehicle re-ID.

framework

Updates

[2020-10-13] All trained models for the camera-ready version have been updated, see Trained Models for details.

[2020-09-25] SpCL has been accepted by NeurIPS on the condition that experiments on DukeMTMC-reID dataset should be removed, since the dataset has been taken down and should no longer be used.

[2020-07-01] We did the code refactoring to support distributed training, stronger performances and more features. Please see OpenUnReID.

Requirements

Installation

git clone https://github.com/yxgeee/SpCL.git
cd SpCL
python setup.py develop

Prepare Datasets

cd examples && mkdir data

Download the person datasets Market-1501, MSMT17, PersonX, and the vehicle datasets VehicleID, VeRi-776, VehicleX. Then unzip them under the directory like

SpCL/examples/data
├── market1501
│   └── Market-1501-v15.09.15
├── msmt17
│   └── MSMT17_V1
├── personx
│   └── PersonX
├── vehicleid
│   └── VehicleID -> VehicleID_V1.0
├── vehiclex
│   └── AIC20_ReID_Simulation -> AIC20_track2/AIC20_ReID_Simulation
└── veri
    └── VeRi -> VeRi_with_plate

Prepare ImageNet Pre-trained Models for IBN-Net

When training with the backbone of IBN-ResNet, you need to download the ImageNet-pretrained model from this link and save it under the path of logs/pretrained/.

mkdir logs && cd logs
mkdir pretrained

The file tree should be

SpCL/logs
└── pretrained
    └── resnet50_ibn_a.pth.tar

ImageNet-pretrained models for ResNet-50 will be automatically downloaded in the python script.

Training

We utilize 4 GTX-1080TI GPUs for training. Note that

  • The training for SpCL is end-to-end, which means that no source-domain pre-training is required.
  • use --iters 400 (default) for Market-1501 and PersonX datasets, and --iters 800 for MSMT17, VeRi-776, VehicleID and VehicleX datasets;
  • use --width 128 --height 256 (default) for person datasets, and --height 224 --width 224 for vehicle datasets;
  • use -a resnet50 (default) for the backbone of ResNet-50, and -a resnet_ibn50a for the backbone of IBN-ResNet.

Unsupervised Domain Adaptation

To train the model(s) in the paper, run this command:

CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py \
  -ds $SOURCE_DATASET -dt $TARGET_DATASET --logs-dir $PATH_OF_LOGS

Some examples:

### PersonX -> Market-1501 ###
# use all default settings is ok
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py \
  -ds personx -dt market1501 --logs-dir logs/spcl_uda/personx2market_resnet50

### Market-1501 -> MSMT17 ###
# use all default settings except for iters=800
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py --iters 800 \
  -ds market1501 -dt msmt17 --logs-dir logs/spcl_uda/market2msmt_resnet50

### VehicleID -> VeRi-776 ###
# use all default settings except for iters=800, height=224 and width=224
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_uda.py --iters 800 --height 224 --width 224 \
  -ds vehicleid -dt veri --logs-dir logs/spcl_uda/vehicleid2veri_resnet50

Unsupervised Learning

To train the model(s) in the paper, run this command:

CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py \
  -d $DATASET --logs-dir $PATH_OF_LOGS

Some examples:

### Market-1501 ###
# use all default settings is ok
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py \
  -d market1501 --logs-dir logs/spcl_usl/market_resnet50

### MSMT17 ###
# use all default settings except for iters=800
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py --iters 800 \
  -d msmt17 --logs-dir logs/spcl_usl/msmt_resnet50

### VeRi-776 ###
# use all default settings except for iters=800, height=224 and width=224
CUDA_VISIBLE_DEVICES=0,1,2,3 \
python examples/spcl_train_usl.py --iters 800 --height 224 --width 224 \
  -d veri --logs-dir logs/spcl_usl/veri_resnet50

Evaluation

We utilize 1 GTX-1080TI GPU for testing. Note that

  • use --width 128 --height 256 (default) for person datasets, and --height 224 --width 224 for vehicle datasets;
  • use --dsbn for domain adaptive models, and add --test-source if you want to test on the source domain;
  • use -a resnet50 (default) for the backbone of ResNet-50, and -a resnet_ibn50a for the backbone of IBN-ResNet.

Unsupervised Domain Adaptation

To evaluate the domain adaptive model on the target-domain dataset, run:

CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn \
  -d $DATASET --resume $PATH_OF_MODEL

To evaluate the domain adaptive model on the source-domain dataset, run:

CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn --test-source \
  -d $DATASET --resume $PATH_OF_MODEL

Some examples:

### Market-1501 -> MSMT17 ###
# test on the target domain
CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn \
  -d msmt17 --resume logs/spcl_uda/market2msmt_resnet50/model_best.pth.tar
# test on the source domain
CUDA_VISIBLE_DEVICES=0 \
python examples/test.py --dsbn --test-source \
  -d market1501 --resume logs/spcl_uda/market2msmt_resnet50/model_best.pth.tar

Unsupervised Learning

To evaluate the model, run:

CUDA_VISIBLE_DEVICES=0 \
python examples/test.py \
  -d $DATASET --resume $PATH

Some examples:

### Market-1501 ###
CUDA_VISIBLE_DEVICES=0 \
python examples/test.py \
  -d market1501 --resume logs/spcl_usl/market_resnet50/model_best.pth.tar

Trained Models

framework

You can download the above models in the paper from [Google Drive] or [Baidu Yun](password: w3l9).

Citation

If you find this code useful for your research, please cite our paper

@inproceedings{ge2020selfpaced,
    title={Self-paced Contrastive Learning with Hybrid Memory for Domain Adaptive Object Re-ID},
    author={Yixiao Ge and Feng Zhu and Dapeng Chen and Rui Zhao and Hongsheng Li},
    booktitle={Advances in Neural Information Processing Systems},
    year={2020}
}
Owner
Yixiao Ge
Ph.D Candidate @ CUHK-MMLab
Yixiao Ge
PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

PyTorch implementation of our ICCV 2021 paper, Interpretation of Emergent Communication in Heterogeneous Collaborative Embodied Agents.

Saim Wani 4 May 08, 2022
nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures.

nextPARS, a novel Illumina-based implementation of in-vitro parallel probing of RNA structures. Here you will find the scripts necessary to produce th

Jesse Willis 0 Jan 20, 2022
Codecov coverage standard for Python

Python-Standard Last Updated: 01/07/22 00:09:25 What is this? This is a Python application, with basic unit tests, for which coverage is uploaded to C

Codecov 10 Nov 04, 2022
Adversarial-autoencoders - Tensorflow implementation of Adversarial Autoencoders

Adversarial Autoencoders (AAE) Tensorflow implementation of Adversarial Autoencoders (ICLR 2016) Similar to variational autoencoder (VAE), AAE imposes

Qian Ge 236 Nov 13, 2022
Train an RL agent to execute natural language instructions in a 3D Environment (PyTorch)

Gated-Attention Architectures for Task-Oriented Language Grounding This is a PyTorch implementation of the AAAI-18 paper: Gated-Attention Architecture

Devendra Chaplot 234 Nov 05, 2022
Parris, the automated infrastructure setup tool for machine learning algorithms.

README Parris, the automated infrastructure setup tool for machine learning algorithms. What Is This Tool? Parris is a tool for automating the trainin

Joseph Greene 319 Aug 02, 2022
A library for answering questions using data you cannot see

A library for computing on data you do not own and cannot see PySyft is a Python library for secure and private Deep Learning. PySyft decouples privat

OpenMined 8.5k Jan 02, 2023
Source code of our BMVC 2021 paper: AniFormer: Data-driven 3D Animation with Transformer

AniFormer This is the PyTorch implementation of our BMVC 2021 paper AniFormer: Data-driven 3D Animation with Transformer. Haoyu Chen, Hao Tang, Nicu S

24 Nov 02, 2022
Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation Prerequisites This repo is built upon a local copy of transfo

Jixuan Wang 10 Sep 28, 2022
Pretraining Representations For Data-Efficient Reinforcement Learning

Pretraining Representations For Data-Efficient Reinforcement Learning Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand, Laurent Ch

Mila 40 Dec 11, 2022
The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines"

MangaLineExtraction_PyTorch The (Official) PyTorch Implementation of the paper "Deep Extraction of Manga Structural Lines" Usage model_torch.py [sourc

Miaomiao Li 82 Jan 02, 2023
Encoding Causal Macrovariables

Encoding Causal Macrovariables Data Natural climate data ('El Nino') Self-generated data ('Simulated') Experiments Detecting macrovariables through th

Benedikt Höltgen 3 Jul 31, 2022
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022
My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kohei Ozaki 18 Aug 19, 2022
NeurIPS 2021 paper 'Representation Learning on Spatial Networks' code

Representation Learning on Spatial Networks This repository is the official implementation of Representation Learning on Spatial Networks. Training Ex

13 Dec 29, 2022
NNR conformation conditional and global probabilities estimation and analysis in peptides or proteins fragments

NNR and global probabilities estimation and analysis in peptides or protein fragments This module calculates global and NNR conformation dependent pro

0 Jul 15, 2021
Get a Grip! - A robotic system for remote clinical environments.

Get a Grip! Within clinical environments, sterilization is an essential procedure for disinfecting surgical and medical instruments. For our engineeri

Jay Sharma 1 Jan 05, 2022
Pytorch implementation of AngularGrad: A New Optimization Technique for Angular Convergence of Convolutional Neural Networks

AngularGrad Optimizer This repository contains the oficial implementation for AngularGrad: A New Optimization Technique for Angular Convergence of Con

mario 124 Sep 16, 2022
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
🌈 PyTorch Implementation for EMNLP'21 Findings "Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer"

SGLKT-VisDial Pytorch Implementation for the paper: Reasoning Visual Dialog with Sparse Graph Learning and Knowledge Transfer Gi-Cheon Kang, Junseok P

Gi-Cheon Kang 9 Jul 05, 2022