Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Overview

Grad2Task: Improved Few-shot Text Classification Using Gradients for Task Representation

Prerequisites

This repo is built upon a local copy of transformers==2.1.1. This repo has been tested on torch==1.4.0 with python 3.7 and CUDA 10.1.

To start, create a new environment and install:

conda create -n grad2task python=3.7
conda activate grad2task
cd Grad2Task
pip install -e .

We use wandb for logging. Please set it up following this doc and specify your project name on wandb in run_meta_training.sh:

export WANDB=[YOUR PROJECT NAME]

Download the dataset and unzip it under the main folder: https://drive.google.com/file/d/1uAdgZFYv9epk6tQVQ3SwboxFpSlkC_ZW/view?usp=sharing

If need to place it somewhere else, specify its path in path.sh.

Train & Evaluation

To train/evaluate models:

bash meta_learn.sh [MODEL_NAME] [MODE] [EXP_ID]

where [MODEL_NAME] refers to model name, [MODE] is experiment model and [EXP_ID] is an optional experiment id used for mark different runs using the same model. Options for [MODEL_NAM] and MODE are listed as follow:

[MODE] Description
train Training models.
test_best Test the model with the best validation performance.
test_latest Test the latest checkpoint.
test Test model without meta-training. Only applicable to the fine-tune-baseline model.
[MODEL_NAME] Description
fine-tune-baseline Fine-tuning BERT for each task separately.
bert-protonet-euc ProtoNet with BERT as encoder, using Euclidean distance as distance metric.
bert-protonet-euc-bn ProtoNet with BERT+Bottleneck Adapters as encoder, using Euclidean distance as distance metric.
bert-protonet ProtoNet with BERT as encoder, using cosine distance as distance metric.
bert-protonet-bn ProtoNet with BERT+Bottleneck Adapters as encoder, using cosine distance as distance metric.
bert-leopard Leopard with pretrained BERT [1].
bert-leopard-fixlr Leopard but with fixed learning rates.
bert-cnap-bn-euc-context-cls-shift-scale-ar Our proposed approach using gradients as task representation.
bert-cnap-bn-euc-context-cls-shift-scale-ar-X Our proposed approach using average input encoding as task representation.
bert-cnap-bn-euc-context-cls-shift-scale-ar-XGrad Our proposed approach using both gradients and input encoding as task representation.
bert-cnap-bn-euc-context-cls-shift-scale-ar-XY Our proposed approach using input and textual label encoding as task representation.
bert-cnap-bn-euc-context-shift-scale-ar Same with our proposed approach except adapting all tokens instead of just the [CLS] token as we do.
bert-cnap-bn-pretrained-taskemb Our proposed approach with pretrained task embedding model.
bert-cnap-bn-hyper A hypernetwork based approach.

To run a model with different hyperparameters, first name this run by [EXP_ID] and then specify the new hyperparameters in run/meta_learn.sh. For example, if one wants to run bert-protonet-euc with a smaller learning rate, they could modify run/meta_learn.sh as:

...
elif [ $1 == "bert-protonet-bn" ]; then # ProtoNet with cosince distance
    export LEARNING_RATE=2e-5
    export CHECKPOINT_FREQ=1000
    if [ ${EXP_ID} == *"lr1e-5" ]; then
        export LEARNING_RATE=1e-5
        export CHECKPOINT_FREQ=2000
        # modify other hyperparameters here
    fi
...

and then run:

bash meta_learn.sh bert-protonet-bn train lr1e-5

Reference

[1] T. Bansal, R. Jha, and A. McCallum. Learning to few-shot learn across diverse natural language classification tasks. In Proceedings of the 28th International Conference on Computational Linguistics, pages 5108–5123, 2020.

Owner
Jixuan Wang
Computer Science PhD student at University of Toronto. Research interests include deep learning and machine learning, and their applications in healthcare.
Jixuan Wang
Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFMS)

Primeira_Rede_Neural_Convolucional Rede Neural Convolucional feita durante o processo seletivo do Laboratório de Inteligência Artificial da FACOM (UFM

Roney_Felipe 1 Jan 13, 2022
Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners

Unofficial PyTorch implementation of Masked Autoencoders Are Scalable Vision Learners This repository is built upon BEiT, thanks very much! Now, we on

Zhiliang Peng 2.3k Jan 04, 2023
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
The fastai deep learning library

Welcome to fastai fastai simplifies training fast and accurate neural nets using modern best practices Important: This documentation covers fastai v2,

fast.ai 23.2k Jan 07, 2023
Neural Articulated Radiance Field

Neural Articulated Radiance Field NARF Neural Articulated Radiance Field Atsuhiro Noguchi, Xiao Sun, Stephen Lin, Tatsuya Harada ICCV 2021 [Paper] [Co

Atsuhiro Noguchi 144 Jan 03, 2023
Memory-Augmented Model Predictive Control

Memory-Augmented Model Predictive Control This repository hosts the source code for the journal article "Composing MPC with LQR and Neural Networks fo

Fangyu Wu 1 Jun 19, 2022
Neon-erc20-example - Example of creating SPL token and wrapping it with ERC20 interface in Neon EVM

Example of wrapping SPL token by ERC2-20 interface in Neon Requirements Install

7 Mar 28, 2022
Using LSTM to detect spoofing attacks in an Air-Ground network

Using LSTM to detect spoofing attacks in an Air-Ground network Specifications IDE: Spider Packages: Tensorflow 2.1.0 Keras NumPy Scikit-learn Matplotl

Tiep M. H. 1 Nov 20, 2021
Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression.

Spatio-Temporal Entropy Model A Pytorch Reproduction of Spatio-Temporal Entropy Model (STEM) for end-to-end leaned video compression. More details can

16 Nov 28, 2022
Learning Versatile Neural Architectures by Propagating Network Codes

Learning Versatile Neural Architectures by Propagating Network Codes Mingyu Ding, Yuqi Huo, Haoyu Lu, Linjie Yang, Zhe Wang, Zhiwu Lu, Jingdong Wang,

Mingyu Ding 36 Dec 06, 2022
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022
PyTorch and Tensorflow functional model definitions

functional-zoo Model definitions and pretrained weights for PyTorch and Tensorflow PyTorch, unlike lua torch, has autograd in it's core, so using modu

Sergey Zagoruyko 590 Dec 22, 2022
Fast Differentiable Matrix Sqrt Root

Official Pytorch implementation of ICLR 22 paper Fast Differentiable Matrix Square Root

YueSong 42 Dec 30, 2022
Probabilistic Programming and Statistical Inference in PyTorch

PtStat Probabilistic Programming and Statistical Inference in PyTorch. Introduction This project is being developed during my time at Cogent Labs. The

Stefano Peluchetti 109 Nov 26, 2022
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
Unified file system operation experience for different backend

megfile - Megvii FILE library Docs: http://megvii-research.github.io/megfile megfile provides a silky operation experience with different backends (cu

MEGVII Research 76 Dec 14, 2022
Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals

LapDepth-release This repository is a Pytorch implementation of the paper "Monocular Depth Estimation Using Laplacian Pyramid-Based Depth Residuals" M

Minsoo Song 205 Dec 30, 2022
Neural Koopman Lyapunov Control

Neural-Koopman-Lyapunov-Control Code for our paper: Neural Koopman Lyapunov Control Requirements dReal4: v4.19.02.1 PyTorch: 1.2.0 The learning framew

Vrushabh Zinage 6 Dec 24, 2022
🧑‍🔬 verify your TEAL program by experiment and observation

Graviton - Testing TEAL with Dry Runs Tutorial Local Installation The following instructions assume that you have make available in your local environ

Algorand 18 Jan 03, 2023
Distributed Asynchronous Hyperparameter Optimization in Python

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

6.5k Jan 01, 2023