Tensorflow port of a full NetVLAD network

Overview

netvlad_tf

The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide the weights corresponding to the best model as TensorFlow checkpoint. The repository also contains code that can be used to import other models that were trained in Matlab, as well as tests to make sure that Python produces similar results as Matlab.

We might or might not port the training code to Python/TensorFlow in the future. See GitHub issues.

For your convenience, here is the BibTeX of NetVLAD:

@InProceedings{Arandjelovic16,
  author       = "Arandjelovi\'c, R. and Gronat, P. and Torii, A. and Pajdla, T. and Sivic, J.",
  title        = "{NetVLAD}: {CNN} architecture for weakly supervised place recognition",
  booktitle    = "IEEE Conference on Computer Vision and Pattern Recognition",
  year         = "2016",
}

This TensorFlow port has been written at the Robotics and Perception Group, University of Zurich and ETH Zurich.

Citation

If you use this code in an academic context, please cite the following ICRA'18 publication:

T. Cieslewski, S. Choudhary, D. Scaramuzza: Data-Efficient Decentralized Visual SLAM IEEE International Conference on Robotics and Automation (ICRA), 2018.

Deploying the default model

Download the checkpoint here(1.1 GB). Extract the zip and move its contents to the checkpoints folder of the repo.

Add the python folder to $PYTHONPATH. Alternatively, ROS users can simply clone this repository into the src folder of a catkin workspace.

Python dependencies, which can all be downloaded with pip are:

numpy
tensorflow-gpu

matplotlib (tests only)
opencv-python (tests only)
scipy (model importing only)

The default network can now be deployed as follows:

import cv2
import numpy as np
import tensorflow as tf

import netvlad_tf.net_from_mat as nfm
import netvlad_tf.nets as nets

tf.reset_default_graph()

image_batch = tf.placeholder(
        dtype=tf.float32, shape=[None, None, None, 3])

net_out = nets.vgg16NetvladPca(image_batch)
saver = tf.train.Saver()

sess = tf.Session()
saver.restore(sess, nets.defaultCheckpoint())

inim = cv2.imread(nfm.exampleImgPath())
inim = cv2.cvtColor(inim, cv2.COLOR_BGR2RGB)

batch = np.expand_dims(inim, axis=0)
result = sess.run(net_out, feed_dict={image_batch: batch})

A test to make sure that you get the correct output

To verify that you get the correct output, download this mat (83MB) and put it into the matlab folder. Then, you can run tests/test_nets.py: if it passes, you get the same output as the Matlab implementation for the example image. Note: An issue has been reported where some versions of Matlab and Python load images differently.

Importing other models trained with Matlab

Assuming you have a .mat file with your model:

  1. Run it through matlab/net_class2struct. This converts all serialized classes to serialized structs and is necessary for Python to be able to read all data fields. Note that Matlab needs access to the corresponding class definitions, so you probably need to have NetVLAD set up in Matlab.
  2. Make sure it runs through net_from_mat.netFromMat(). You might need to adapt some of the code there if you use a model that differs from the default one. It is helpful to use the Matlab variable inspector for debugging here.
  3. Adapt and run tests/test_net_from_mat.py. This helps you to ensure that all intermediate layers produce reasonably similar results.
  4. See mat_to_checkpoint.py for how to convert a mat file to a checkpoint. Once you have the checkpoint, you can define the network from scratch (compare to nets.vgg16NetvladPca()). Now, if all variables have been named consistently, you have a pure TensorFlow version of your NetVLAD network model. See tests/test_nets.py for a test that also verifies this implementation.

Performance test on KITTI 00

See matlab/kitti_pr.m and tests/test_kitti.py for further testing which ensures that place recognition performance is consistent between the Matlab and Python implementations. This test requires the grayscale odometry data of KITTI to be linked in the main folder of the repo.

kitti

Owner
Robotics and Perception Group
Robotics and Perception Group
MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network

MatchGAN: A Self-supervised Semi-supervised Conditional Generative Adversarial Network This repository is the official implementation of MatchGAN: A S

Justin Sun 12 Dec 27, 2022
Code for PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing

PhySG: Inverse Rendering with Spherical Gaussians for Physics-based Relighting and Material Editing CVPR 2021. Project page: https://kai-46.github.io/

Kai Zhang 141 Dec 14, 2022
A state of the art of new lightweight YOLO model implemented by TensorFlow 2.

CSL-YOLO: A New Lightweight Object Detection System for Edge Computing This project provides a SOTA level lightweight YOLO called "Cross-Stage Lightwe

Miles Zhang 54 Dec 21, 2022
This is a work in progress reimplementation of Instant Neural Graphics Primitives

Neural Hash Encoding This is a work in progress reimplementation of Instant Neural Graphics Primitives Currently this can train an implicit representa

Penn 79 Sep 01, 2022
Python script to download the celebA-HQ dataset from google drive

download-celebA-HQ Python script to download and create the celebA-HQ dataset. WARNING from the author. I believe this script is broken since a few mo

133 Dec 21, 2022
ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos

ComPhy This repository holds the code for the paper. ComPhy: Compositional Physical Reasoning ofObjects and Events from Videos, (Under review) PDF Pro

29 Dec 29, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
Probabilistic Gradient Boosting Machines

PGBM Probabilistic Gradient Boosting Machines (PGBM) is a probabilistic gradient boosting framework in Python based on PyTorch/Numba, developed by Air

Olivier Sprangers 112 Dec 28, 2022
Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

SSL_OSC Graph Self-Supervised Learning for Optoelectronic Properties of Organic Semiconductors

zaixizhang 2 May 14, 2022
No Code AI/ML platform

NoCodeAIML No Code AI/ML platform - Community Edition Video credits: Uday Kiran Typical No Code AI/ML Platform will have features like drag and drop,

Bhagvan Kommadi 5 Jan 28, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
A resource for learning about deep learning techniques from regression to LSTM and Reinforcement Learning using financial data and the fitness functions of algorithmic trading

A tour through tensorflow with financial data I present several models ranging in complexity from simple regression to LSTM and policy networks. The s

195 Dec 07, 2022
Final project code: Implementing MAE with downscaled encoders and datasets, for ESE546 FA21 at University of Pennsylvania

546 Final Project: Masked Autoencoder Haoran Tang, Qirui Wu 1. Training To train the network, please run mae_pretraining.py. Please modify folder path

Haoran Tang 0 Apr 22, 2022
TLoL (Python Module) - League of Legends Deep Learning AI (Research and Development)

TLoL-py - League of Legends Deep Learning Library TLoL-py is the Python component of the TLoL League of Legends deep learning library. It provides a s

7 Nov 29, 2022
A library of multi-agent reinforcement learning components and systems

Mava: a research framework for distributed multi-agent reinforcement learning Table of Contents Overview Getting Started Supported Environments System

InstaDeep Ltd 463 Dec 23, 2022
Code for the paper "Attention Approximates Sparse Distributed Memory"

Attention Approximates Sparse Distributed Memory - Codebase This is all of the code used to run analyses in the paper "Attention Approximates Sparse D

Trenton Bricken 14 Dec 05, 2022
Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Styled text-to-drawing synthesis method. Featured at the 2021 NeurIPS Workshop on Machine Learning for Creativity and Design

Peter Schaldenbrand 247 Dec 23, 2022
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020
Collection of machine learning related notebooks to share.

ML_Notebooks Collection of machine learning related notebooks to share. Notebooks GAN_distributed_training.ipynb In this Notebook, TensorFlow's tutori

Sascha Kirch 14 Dec 22, 2022
GPU Programming with Julia - course at the Swiss National Supercomputing Centre (CSCS), ETH Zurich

Course Description The programming language Julia is being more and more adopted in High Performance Computing (HPC) due to its unique way to combine

Samuel Omlin 192 Jan 03, 2023