World Models with TensorFlow 2

Overview

World Models

This repo reproduces the original implementation of World Models. This implementation uses TensorFlow 2.2.

Docker

The easiest way to handle dependencies is with Nvidia-Docker. Follow the instructions below to generate and attach to the container.

docker image build -t wm:1.0 -f docker/Dockerfile.wm .
docker container run -p 8888:8888 --gpus '"device=0"' --detach -it --name wm wm:1.0
docker attach wm

Visualizations

To visualize the environment from the agents perspective or generate synthetic observations use the visualizations jupyter notebook. It can be launched from your container with the following:

jupyter notebook --no-browser --port=8888 --ip=0.0.0.0 --allow-root
Real Frame Sample Reconstructed Real Frame Imagined Frame
alt-text-1 alt-text-2 alt-text-3
Ground Truth (CarRacing) Reconstructed
drawing drawing
Ground Truth Environment (DoomTakeCover) Dream Environment
drawing drawing

Reproducing Results From Scratch

These instructions assume a machine with a 64 core cpu and a gpu. If running in the cloud it will likely financially make more sense to run the extraction and controller processes on a cpu machine and the VAE, preprocessing, and RNN tasks on a GPU machine.

DoomTakeCover-v0

CAUTION The doom environment leaves some processes hanging around. In addition to running the doom experiments, the script kills processes including 'vizdoom' in the name (be careful with this if you are not running in a container). To reproduce results for DoomTakeCover-v0 run the following bash script.

bash launch_scripts/wm_doom.bash

CarRacing-v0

To reproduce results for CarRacing-v0 run the following bash script

bash launch_scripts/carracing.bash

Disclaimer

I have not run this for long enough(~45 days wall clock time) to verify that we produce the same results on CarRacing-v0 as the original implementation.

Average return curves comparing the original implementation and ours. The shaded area represents a standard deviation above and below the mean.

alt text

For simplicity, the Doom experiment implementation is slightly different than the original

  • We do not use weighted cross entropy loss for done predictions
  • We train the RNN with sequences that always begin at the start of an episode (as opposed to random subsequences)
  • We sample whether the agent dies (as opposed to a deterministic cut-off)
\tau Returns Dream Environment        Returns Actual Environment       
D. Ha Original 1.0 1145 +/- 690 868 +/- 511
Eager 1.0 1465 +/- 633 849 +/- 499
Owner
Zac Wellmer
Zac Wellmer
Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

ademxapp Visual applications by the University of Adelaide In designing our Model A, we did not over-optimize its structure for efficiency unless it w

Zifeng Wu 338 Dec 12, 2022
Convert Table data to approximate values with GUI

Table_Editor Convert Table data to approximate values with GUIs... usage - Import methods for extension Tables. Imported method supposed to have only

CLJ 1 Jan 10, 2022
PyTorch implementations for our SIGGRAPH 2021 paper: Editable Free-viewpoint Video Using a Layered Neural Representation.

st-nerf We provide PyTorch implementations for our paper: Editable Free-viewpoint Video Using a Layered Neural Representation SIGGRAPH 2021 Jiakai Zha

Diplodocus 258 Jan 02, 2023
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
DualGAN-tensorflow: tensorflow implementation of DualGAN

ICCV paper of DualGAN DualGAN: unsupervised dual learning for image-to-image translation please cite the paper, if the codes has been used for your re

Jack Yi 252 Nov 10, 2022
【ACMMM 2021】DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning

DSANet: Dynamic Segment Aggregation Network for Video-Level Representation Learning (ACMMM 2021) Overview We release the code of the DSANet (Dynamic S

Wenhao Wu 46 Dec 27, 2022
Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates

Safe Control for Black-box Dynamical Systems via Neural Barrier Certificates Installation Clone the repository: git clone https://github.com/Zengyi-Qi

Zengyi Qin 3 Oct 18, 2022
PolyTrack: Tracking with Bounding Polygons

PolyTrack: Tracking with Bounding Polygons Abstract In this paper, we present a novel method called PolyTrack for fast multi-object tracking and segme

Gaspar Faure 13 Sep 15, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
Human4D Dataset tools for processing and visualization

HUMAN4D: A Human-Centric Multimodal Dataset for Motions & Immersive Media HUMAN4D constitutes a large and multimodal 4D dataset that contains a variet

tofis 15 Nov 09, 2022
This repo contains the pytorch implementation for Dynamic Concept Learner (accepted by ICLR 2021).

DCL-PyTorch Pytorch implementation for the Dynamic Concept Learner (DCL). More details can be found at the project page. Framework Grounding Physical

Zhenfang Chen 31 Jan 06, 2023
Roach: End-to-End Urban Driving by Imitating a Reinforcement Learning Coach

CARLA-Roach This is the official code release of the paper End-to-End Urban Driving by Imitating a Reinforcement Learning Coach by Zhejun Zhang, Alexa

Zhejun Zhang 118 Dec 28, 2022
3ds-Ghidra-Scripts - Ghidra scripts to help with 3ds reverse engineering

3ds Ghidra Scripts These are ghidra scripts to help with 3ds reverse engineering

Zak 7 May 23, 2022
Download & Install mods for your favorit game with a few simple clicks

Husko's SteamWorkshop Downloader 🔴 IMPORTANT ❗ 🔴 The Tool is currently being rewritten so updates will be slow and only on the dev branch until it i

Husko 67 Nov 25, 2022
Si Adek Keras is software VR dangerous object detection.

Si Adek Python Keras Sistem Informasi Deteksi Benda Berbahaya Keras Python. Version 1.0 Developed by Ananda Rauf Maududi. Developed date: 24 November

Ananda Rauf 1 Dec 21, 2021
App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

Mateusz Kurdziel 0 Jun 22, 2022
Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data

VIMuRe Latent Network Models to Account for Noisy, Multiply-Reported Social Network Data. If you use this code please cite this article (preprint). De

6 Dec 15, 2022
Masked regression code - Masked Regression

Masked Regression MR - Python Implementation This repositery provides a python implementation of MR (Masked Regression). MR can efficiently synthesize

Arbish Akram 1 Dec 23, 2021
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022