Group-Free 3D Object Detection via Transformers

Overview

Group-Free 3D Object Detection via Transformers

By Ze Liu, Zheng Zhang, Yue Cao, Han Hu, Xin Tong.

This repo is the official implementation of "Group-Free 3D Object Detection via Transformers".

teaser

Updates

  • April 01, 2021: initial release.

Introduction

Recently, directly detecting 3D objects from 3D point clouds has received increasing attention. To extract object representation from an irregular point cloud, existing methods usually take a point grouping step to assign the points to an object candidate so that a PointNet-like network could be used to derive object features from the grouped points. However, the inaccurate point assignments caused by the hand-crafted grouping scheme decrease the performance of 3D object detection. In this paper, we present a simple yet effective method for directly detecting 3D objects from the 3D point cloud. Instead of grouping local points to each object candidate, our method computes the feature of an object from all the points in the point cloud with the help of an attention mechanism in the Transformers, where the contribution of each point is automatically learned in the network training. With an improved attention stacking scheme, our method fuses object features in different stages and generates more accurate object detection results. With few bells and whistles, the proposed method achieves state-of-the-art 3D object detection performance on two widely used benchmarks, ScanNet V2 and SUN RGB-D.

In this repository, we provide model implementation (with Pytorch) as well as data preparation, training and evaluation scripts on ScanNet and SUN RGB-D.

Citation

@article{liu2021,
  title={Group-Free 3D Object Detection via Transformers},
  author={Liu, Ze and Zhang, Zheng and Cao, Yue and Hu, Han and Tong, Xin},
  journal={arXiv preprint arXiv:2104.00678},
  year={2021}
}

Main Results

ScanNet V2

Method backbone [email protected] [email protected] Model
HGNet GU-net 61.3 34.4 -
GSDN MinkNet 62.8 34.8 waiting for release
3D-MPA MinkNet 64.2 49.2 waiting for release
VoteNet PointNet++ 62.9 39.9 official repo
MLCVNet PointNet++ 64.5 41.4 official repo
H3DNet PointNet++ 64.4 43.4 official repo
H3DNet 4xPointNet++ 67.2 48.1 official repo
Ours(L6, O256) PointNet++ 67.3 (66.2*) 48.9 (48.4*) model
Ours(L12, O256) PointNet++ 67.2 (66.6*) 49.7 (49.3*) model
Ours(L12, O256) PointNet++w2× 68.8 (68.3*) 52.1 (51.1*) model
Ours(L12, O512) PointNet++w2× 69.1 (68.8*) 52.8 (52.3*) model

SUN RGB-D

Method backbone inputs [email protected] [email protected] Model
VoteNet PointNet++ point 59.1 35.8 official repo
MLCVNet PointNet++ point 59.8 - official repo
HGNet GU-net point 61.6 - -
H3DNet 4xPointNet++ point 60.1 39.0 official repo
imVoteNet PointNet++ point+RGB 63.4 - official repo
Ours(L6, O256) PointNet++ point 62.8 (62.6*) 42.3 (42.0*) model

Notes:

  • * means the result is averaged over 5-times evaluation since the algorithm randomness is large.

Install

Requirements

  • Ubuntu 16.04
  • Anaconda with python=3.6
  • pytorch>=1.3
  • torchvision with pillow<7
  • cuda=10.1
  • trimesh>=2.35.39,<2.35.40
  • 'networkx>=2.2,<2.3'
  • compile the CUDA layers for PointNet++, which we used in the backbone network: sh init.sh
  • others: pip install termcolor opencv-python tensorboard

Data preparation

For SUN RGB-D, follow the README under the sunrgbd folder.

For ScanNet, follow the README under the scannet folder.

Usage

ScanNet

For L6, O256 training:

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
    train_dist.py --num_point 50000 --num_decoder_layers 6 \
    --size_delta 0.111111111111 --center_delta 0.04 \
    --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 \
    --dataset scannet --data_root <data directory> [--log_dir <log directory>]

For L6, O256 evaluation:

python eval_avg.py --num_point 50000 --num_decoder_layers 6 \
    --checkpoint_path <checkpoint> --avg_times 5 \
    --dataset scannet --data_root <data directory> [--dump_dir <dump directory>]

For L12, O256 training:

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
    train_dist.py --num_point 50000 --num_decoder_layers 12 \
    --size_delta 0.111111111111 --center_delta 0.04 \
    --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 \
    --dataset scannet --data_root <data directory> [--log_dir <log directory>]

For L6, O256 evaluation:

python eval_avg.py --num_point 50000 --num_decoder_layers 12 \
    --checkpoint_path <checkpoint> --avg_times 5 \
    --dataset scannet --data_root <data directory> [--dump_dir <dump directory>]

For w2x, L12, O256 training:

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
    train_dist.py --num_point 50000 --width 2 --num_decoder_layers 12 \
    --size_delta 0.111111111111 --center_delta 0.04 \
    --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 \
    --dataset scannet --data_root <data directory> [--log_dir <log directory>]

For w2x, L12, O256 evaluation:

python eval_avg.py --num_point 50000 --width 2 --num_decoder_layers 12 \
    --checkpoint_path <checkpoint> --avg_times 5 \
    --dataset scannet --data_root <data directory> [--dump_dir <dump directory>]

For w2x, L12, O512 training:

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
    train_dist.py --num_point 50000 --width 2 --num_decoder_layers 12 --num_target 512 \
    --size_delta 0.111111111111 --center_delta 0.04 \
    --learning_rate 0.006 --decoder_learning_rate 0.0006 --weight_decay 0.0005 \
    --dataset scannet --data_root <data directory> [--log_dir <log directory>]

For w2x, L12, O512 evaluation:

python eval_avg.py --num_point 50000 --width 2 --num_decoder_layers 12 --num_target 512 \
    --checkpoint_path <checkpoint> --avg_times 5 \
    --dataset scannet --data_root <data directory> [--dump_dir <dump directory>]

SUN RGB-D

For L6, O256 training:

python -m torch.distributed.launch --master_port <port_num> --nproc_per_node <num_of_gpus_to_use> \
    train_dist.py --max_epoch 600 --lr_decay_epochs 420 480 540 --num_point 20000 --num_decoder_layers 6 \
    --size_delta 0.0625 --heading_delta 0.04 --center_delta 0.1111111111111 \
    --learning_rate 0.004 --decoder_learning_rate 0.0002 --weight_decay 0.00000001 --query_points_generator_loss_coef 0.2 --obj_loss_coef 0.4 \
    --dataset sunrgbd --data_root <data directory> [--log_dir <log directory>]

For L6, O256 evaluation:

python eval_avg.py --num_point 20000 --num_decoder_layers 6 \
    --checkpoint_path <checkpoint> --avg_times 5 \
    --dataset sunrgbd --data_root <data directory> [--dump_dir <dump directory>]

Acknowledgements

We thank a lot for the flexible codebase of votenet.

License

The code is released under MIT License (see LICENSE file for details).

Owner
Ze Liu
USTC & MSRA Joint-PhD candidate.
Ze Liu
Running AlphaFold2 (from ColabFold) in Azure Machine Learning

Running AlphaFold2 (from ColabFold) in Azure Machine Learning Colby T. Ford, Ph.D. Companion repository for Medium Post: How to predict many protein s

Colby T. Ford 3 Feb 18, 2022
An Api for Emotion recognition.

PLAYEMO Playemo was built from the ground-up with Flask, a python tool that makes it easy for developers to build APIs. Use Cases Is Python your langu

greek geek 2 Jul 16, 2022
A faster pytorch implementation of faster r-cnn

A Faster Pytorch Implementation of Faster R-CNN Write at the beginning [05/29/2020] This repo was initaited about two years ago, developed as the firs

Jianwei Yang 7.1k Jan 01, 2023
Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching

Team Enigma at ArgMining 2021 Shared Task: Leveraging Pretrained Language Models for Key Point Matching This is our attempt of the shared task on Quan

Manav Nitin Kapadnis 12 Jul 08, 2022
This game was designed to encourage young people not to gamble on lotteries, as the probablity of correctly guessing the number is infinitesimal!

Lottery Simulator 2022 for Web Launch Application Developed by John Seong in Ontario. This game was designed to encourage young people not to gamble o

John Seong 2 Sep 02, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
PyTorch implementation of paper “Unbiased Scene Graph Generation from Biased Training”

A new codebase for popular Scene Graph Generation methods (2020). Visualization & Scene Graph Extraction on custom images/datasets are provided. It's also a PyTorch implementation of paper “Unbiased

Kaihua Tang 824 Jan 03, 2023
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
Flax is a neural network ecosystem for JAX that is designed for flexibility.

Flax: A neural network library and ecosystem for JAX designed for flexibility Overview | Quick install | What does Flax look like? | Documentation See

Google 3.9k Jan 02, 2023
BRNet - code for Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss function

BRNet code for "Automated assessment of BI-RADS categories for ultrasound images using multi-scale neural networks with an order-constrained loss func

Yong Pi 2 Mar 09, 2022
Official implementation of the paper Do pedestrians pay attention? Eye contact detection for autonomous driving

Do pedestrians pay attention? Eye contact detection for autonomous driving Official implementation of the paper Do pedestrians pay attention? Eye cont

VITA lab at EPFL 26 Nov 02, 2022
Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Aquarius Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions NOTE: We are currently going through the open-source process requir

Zhiyuan YAO 0 Jun 02, 2022
Citation Intent Classification in scientific papers using the Scicite dataset an Pytorch

Citation Intent Classification Table of Contents About the Project Built With Installation Usage Acknowledgments About The Project Citation Intent Cla

Federico Nocentini 4 Mar 04, 2022
magiCARP: Contrastive Authoring+Reviewing Pretraining

magiCARP: Contrastive Authoring+Reviewing Pretraining Welcome to the magiCARP API, the test bed used by EleutherAI for performing text/text bi-encoder

EleutherAI 43 Dec 29, 2022
The Empirical Investigation of Representation Learning for Imitation (EIRLI)

The Empirical Investigation of Representation Learning for Imitation (EIRLI)

Center for Human-Compatible AI 31 Nov 06, 2022
Conditional Gradients For The Approximately Vanishing Ideal

Conditional Gradients For The Approximately Vanishing Ideal Code for the paper: Wirth, E., and Pokutta, S. (2022). Conditional Gradients for the Appro

IOL Lab @ ZIB 0 May 25, 2022
Exploit ILP to learn symmetry breaking constraints of ASP programs.

ILP Symmetry Breaking Overview This project aims to exploit inductive logic programming to lift symmetry breaking constraints of ASP programs. Given a

Research Group Production Systems 1 Apr 13, 2022
Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning

Incremental Cross-Domain Adaptation for Robust Retinopathy Screening via Bayesian Deep Learning Update (September 18th, 2021) A supporting document de

Taimur Hassan 1 Mar 16, 2022
PyTorch implementation of "Optimization Planning for 3D ConvNets"

Optimization-Planning-for-3D-ConvNets Code for the ICML 2021 paper: Optimization Planning for 3D ConvNets. Authors: Zhaofan Qiu, Ting Yao, Chong-Wah N

Zhaofan Qiu 2 Jan 12, 2022
Jittor Medical Segmentation Lib -- The assignment of Pattern Recognition course (2021 Spring) in Tsinghua University

THU模式识别2021春 -- Jittor 医学图像分割 模型列表 本仓库收录了课程作业中同学们采用jittor框架实现的如下模型: UNet SegNet DeepLab V2 DANet EANet HarDNet及其改动HarDNet_alter PSPNet OCNet OCRNet DL

48 Dec 26, 2022