Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

Related tags

Deep LearningAquarius
Overview

Aquarius

Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

NOTE: We are currently going through the open-source process required by our institution. The content will soon be available. The steps that need to be completed are listed below:

  • PREPARE
  • INCLUSIVELINT
  • UNITTEST
  • LINT
  • BUILD & PUBLISH
  • CORONA
  • BLACKDUCK
  • SONARQUBE
  • HELM
  • DEPLOY
  • DEPLOY-STATIC
  • E2E
  • APIDOCS
  • GOPUBLISH

Introduction

This repository implements a data-collection and data-exploitation mechanism Aquarius as a load balancer plugin in VPP. For the sake of reproducibility, software and data artifacts for performance evaluation are maintained in this repository.

Directory Roadmap

- config                    // configuration files in json format        
- sc-author-kit-log         // artifacts description of testbed hardware, required by sc21 committee
- src                       // source code
    + client/server         // scripts that run on client/server VMs
    + lb                    // scripts that run on lb VMs
        * dev               // dev version (for offline feature collection)
        * deploy            // deploy version (for online policy evaluation)
    + utils                 // utility scripts that help to run the testbed
    + vpp                   // vpp plugin
        * dev               // dev version (for offline feature collection)
        * deploy            // deploy version (for online policy evaluation)
    + test                  // unit test codes
- data                      
    + trace                 // network traces replayed on the testbed
    + results (omitted)     // This is where all the datasets are dumped (will be automatically created once we run experiments)
    + img                   // VM image files (omitted here because of file size, server configurations are documented in README)
    + vpp_deb               // stores deb files for installing VPP on VMs
        * dev               // dev version (for offline feature collection)
        * deploy            // deploy version (for online policy evaluation)

Get Started

Pre-Configuration

Run python3 setup.py, which does the following things:

  • update the root directory in config/global_config.json to the directory of the cloned aquarius repository (replace the /home/yzy/aquarius);
  • clone the VPP repository in src/vpp/base;
  • update the physical_server_ip in config/global_config.json to the IP addresses of the actual server IP addresses in use;
  • update the vlan_if as the last network interface on the local machine
  • update the physical_server_ip in config/cluster/unittest-1.json to the local hostname

VM images

To prepare a VM original image, refer to the README file in data. To run all the experiments without issues, create a ssh-key on the host servers and copy the public key to the VMs so that commands can be executed from the host using ssh -t -t.

Run example

A simple example is created using a small network topology (1 client, 1 edge router, 1 load balancer, and 4 application servers) on a single machine. Simply follow the jupyter notebook in notebook/unittest. Make sure the configurations are well adapted to your own host machine. Also make sure that the host machine has at least 20 CPUs. Otherwise, the configuration can be modified in config/cluster/unittest-1.json. To reduce the amount of CPUs required, change the number of vcpu of each node in the json file.

Reproducibility

To reproduce the results in Aquarius paper, three notebooks are presented in notebook/reproduce. The dataset that are generated from the experiments are stored in data/reproduce. To run these experiments, 4 physical machines with 12 physcial cores (48 CPUs) each are required. MACROs in the notebook should be well adapted. For instance, VLAN should be configured across the actual inerfacesin use. An example of network topology is depicted below.

Multi-server Topology

Notes

Running the scripts, e.g. src/utils/testbed_utils.py, requires root access.

Aquarius

Aquarius - Enabling Fast, Scalable, Data-Driven Virtual Network Functions

You might also like...
Official code for ICCV2021 paper
Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network"

M3D-VTON: A Monocular-to-3D Virtual Try-On Network Official code for ICCV2021 paper "M3D-VTON: A Monocular-to-3D Virtual Try-on Network" Paper | Suppl

Official PyTorch implementation of
Official PyTorch implementation of "RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on" (IJCAI-ECAI 2022)

RMGN-VITON RMGN: A Regional Mask Guided Network for Parser-free Virtual Try-on In IJCAI-ECAI 2022(short oral). [Paper] [Supplementary Material] Abstra

Code of paper
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images

InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal Artifact Reduction in CT Images Hong Wang, Yuexiang Li, Haimiao Zhang, Deyu Men

AI-based, context-driven network device ranking
AI-based, context-driven network device ranking

Batea A batea is a large shallow pan of wood or iron traditionally used by gold prospectors for washing sand and gravel to recover gold nuggets. Batea

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020)

RCDNet: A Model-driven Deep Neural Network for Single Image Rain Removal (CVPR2020) Hong Wang, Qi Xie, Qian Zhao, and Deyu Meng [PDF] [Supplementary M

A PyTorch Implementation of
A PyTorch Implementation of "SINE: Scalable Incomplete Network Embedding" (ICDM 2018).

Scalable Incomplete Network Embedding ⠀⠀ A PyTorch implementation of Scalable Incomplete Network Embedding (ICDM 2018). Abstract Attributed network em

The AugNet Python module contains functions for the fast computation of image similarity.
The AugNet Python module contains functions for the fast computation of image similarity.

AugNet AugNet: End-to-End Unsupervised Visual Representation Learning with Image Augmentation arxiv link In our work, we propose AugNet, a new deep le

A data-driven approach to quantify the value of classifiers in a machine learning ensemble.
A data-driven approach to quantify the value of classifiers in a machine learning ensemble.

Documentation | External Resources | Research Paper Shapley is a Python library for evaluating binary classifiers in a machine learning ensemble. The

Releases(sc22-v1.0-alpha)
  • sc22-v1.0-alpha(Jun 11, 2022)

    ALPHA version of Aquarius release for SC22.

    This release aims at demonstrating the basic workflow of the artifacts of Aquarius. Besides the jupyter notebooks which documents the actual procedure of producing all the experimental results in the paper, a unittest is provided to guide you through the basic workflow of the artifact.

    Please refer to the latest main branch of the Github repo to reproduce the core results presented in the paper: https://github.com/ZhiyuanYaoJ/Aquarius

    Source code(tar.gz)
    Source code(zip)
Owner
Zhiyuan YAO
PhD student at L'Ecole Polytechnique.
Zhiyuan YAO
A collection of papers about Transformer in the field of medical image analysis.

A collection of papers about Transformer in the field of medical image analysis.

Junyu Chen 377 Jan 05, 2023
MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks.

MVGCN MVGCN: a novel multi-view graph convolutional network (MVGCN) framework for link prediction in biomedical bipartite networks. Developer: Fu Hait

13 Dec 01, 2022
Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Active Learning with the Nvidia TLT Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT). In this tutorial, we will show you ho

Lightly 25 Dec 03, 2022
Unofficial pytorch implementation of 'Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization'

pytorch-AdaIN This is an unofficial pytorch implementation of a paper, Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization [Hua

Naoto Inoue 873 Jan 06, 2023
Pull sensitive data from users on windows including discord tokens and chrome data.

⭐ For a 🍪 Pegasus Pull sensitive data from users on windows including discord tokens and chrome data. Features 🟩 Discord tokens 🟩 Geolocation data

Addi 44 Dec 31, 2022
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
The 2nd place solution of 2021 google landmark retrieval on kaggle.

Leaderboard, taxonomy, and curated list of few-shot object detection papers.

229 Dec 13, 2022
Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations

TopClus The source code used for Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations, published in WWW 2022. Requ

Yu Meng 63 Dec 18, 2022
PyTea: PyTorch Tensor shape error analyzer

PyTea: PyTorch Tensor Shape Error Analyzer paper project page Requirements node.js = 12.x python = 3.8 z3-solver = 4.8 How to install and use # ins

ROPAS Lab. 240 Jan 02, 2023
Code for KDD'20 "Generative Pre-Training of Graph Neural Networks"

GPT-GNN: Generative Pre-Training of Graph Neural Networks GPT-GNN is a pre-training framework to initialize GNNs by generative pre-training. It can be

Ziniu Hu 346 Dec 19, 2022
AOT-GAN for High-Resolution Image Inpainting (codebase for image inpainting)

AOT-GAN for High-Resolution Image Inpainting Arxiv Paper | AOT-GAN: Aggregated Contextual Transformations for High-Resolution Image Inpainting Yanhong

Multimedia Research 214 Jan 03, 2023
Implementation for Simple Spectral Graph Convolution in ICLR 2021

Simple Spectral Graph Convolutional Overview This repo contains an example implementation of the Simple Spectral Graph Convolutional (S^2GC) model. Th

allenhaozhu 64 Dec 31, 2022
Deep Q-network learning to play flappybird.

AI Plays Flappy Bird I've trained a DQN that learns to play flappy bird on it's own. Try the pre-trained model First install the pip requirements and

Anish Shrestha 3 Mar 01, 2022
KIND: an Italian Multi-Domain Dataset for Named Entity Recognition

KIND (Kessler Italian Named-entities Dataset) KIND is an Italian dataset for Named-Entity Recognition. It contains more than one million tokens with t

Digital Humanities 5 Jun 21, 2022
The all new way to turn your boring vector meshes into the new fad in town; Voxels!

Voxelator The all new way to turn your boring vector meshes into the new fad in town; Voxels! Notes: I have not tested this on a rotated mesh. With fu

6 Feb 03, 2022
High-fidelity 3D Model Compression based on Key Spheres

High-fidelity 3D Model Compression based on Key Spheres This repository contains the implementation of the paper: Yuanzhan Li, Yuqi Liu, Yujie Lu, Siy

5 Oct 11, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Implementation of Memformer, a Memory-augmented Transformer, in Pytorch

Memformer - Pytorch Implementation of Memformer, a Memory-augmented Transformer, in Pytorch. It includes memory slots, which are updated with attentio

Phil Wang 60 Nov 06, 2022
A pytorch reproduction of { Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation }.

A PyTorch Reproduction of HCN Co-occurrence Feature Learning from Skeleton Data for Action Recognition and Detection with Hierarchical Aggregation. Ch

Guyue Hu 210 Dec 31, 2022
Supervised domain-agnostic prediction framework for probabilistic modelling

A supervised domain-agnostic framework that allows for probabilistic modelling, namely the prediction of probability distributions for individual data

The Alan Turing Institute 112 Oct 23, 2022