Code for the ICCV2021 paper "Personalized Image Semantic Segmentation"

Related tags

Deep LearningPSS
Overview

PSS: Personalized Image Semantic Segmentation

Paper

PSS: Personalized Image Semantic Segmentation
Yu Zhang, Chang-Bin Zhang, Peng-Tao Jiang, Ming-Ming Cheng, Feng Mao. International Conference on Computer Vision (ICCV), 2021

If you find this code useful for your research, please cite our paper:

@inproceedings{zhang2021pss,
  title={Personalized Image Semantic Segmentation},
  author={Yu, Zhang and Chang-Bin, Zhang and Peng-Tao, Jiang and Ming-Ming, Cheng and Feng, Mao},
  booktitle={ICCV},
  year={2021}
}

Abstract

Semantic segmentation models trained on public datasets have achieved great success in recent years. However, these models didn't consider the personalization issue of segmentation though it is important in practice. In this paper, we address the problem of personalized image segmentation. The objective is to generate more accurate segmentation results on unlabeled personalized images by investigating the data's personalized traits. To open up future research in this area, we collect a large dataset containing various users' personalized images called PIS (Personalized Image Semantic Segmentation). We also survey some recent researches related to this problem and report their performance on our dataset. Furthermore, by observing the correlation among a user's personalized images, we propose a baseline method that incorporates the inter-image context when segmenting certain images. Extensive experiments show that our method outperforms the existing methods on the proposed dataset. The code and the PIS dataset will be made publicly available.

Test code

Preparation

Our code is built based on ADVENT. So after clone our repo, you need to install advent(https://github.com/valeoai/ADVENT):

$ conda install -c menpo opencv  # install opencv
$ pip install -e <root_dir>  # install advent

Make a new directory to put datasets and results:

makedir ./data

Dataset

You shold download our PSS dataset and put them under ./data/personal.

Dataset License:

Our dataset is made available only for academic research. Although we have obtained the personalized photos' copyright, the user's privacy is still important. If you want to get access to our data, please send me a request from your school or company email. The request should include the purpose of using our dataset. Thank you for your understanding. (pt.jiang AT mail.nankai.edu.cn)

Pre-trained models

Our pretrained models can be downloaded here. We provide the step2 models that finetuned with pseudo labels, which are reported as OURS-S2 in the paper. Download and put them under ./data/final_res50_step2.

The directory structure should be like

./data/personal/
               id1
               id2
               ...
               id15
      /final_res50_step2/
                         id1.pth
                         id2.pth
                         ...
                         id15.pth

after preparing dataset and pretrained models.

Run test

Run:

bash ./PSS_test.sh

Then you should get the segmentation results of different users' images under ./data/final_res50_step2. The test codes inference all 15 ID's results at a time. If you only want to test on certain user ID, you can modify line153 of script ./test.py.

License

PSS code is released under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Public License for NonCommercial use only. Any commercial use should get formal permission first.

Owner
张宇
Nankai University
张宇
Create images and texts with the First Order Generative Adversarial Networks

First Order Divergence for training GANs This repository contains code accompanying the paper First Order Generative Advesarial Netoworks The majority

Zalando Research 35 Dec 11, 2021
Implementation of "Bidirectional Projection Network for Cross Dimension Scene Understanding" CVPR 2021 (Oral)

Bidirectional Projection Network for Cross Dimension Scene Understanding CVPR 2021 (Oral) [ Project Webpage ] [ arXiv ] [ Video ] Existing segmentatio

Hu Wenbo 135 Dec 26, 2022
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
Multi-Content GAN for Few-Shot Font Style Transfer at CVPR 2018

MC-GAN in PyTorch This is the implementation of the Multi-Content GAN for Few-Shot Font Style Transfer. The code was written by Samaneh Azadi. If you

Samaneh Azadi 422 Dec 04, 2022
VM3000 Microphones

VM3000-Microphones This project was completed by Ricky Leman under the supervision of Dr Ben Travaglione and Professor Melinda Hodkiewicz as part of t

UWA System Health Lab 0 Jun 04, 2021
Satellite labelling tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, rings etc.

Satellite labelling tool About this app A tool for manual labelling of storm top features such as overshooting tops, above-anvil plumes, cold U/Vs, ri

Czech Hydrometeorological Institute - Satellite Department 10 Sep 14, 2022
Python-experiments - A Repository which contains python scripts to automate things and make your life easier with python

Python Experiments A Repository which contains python scripts to automate things

Vivek Kumar Singh 11 Sep 25, 2022
Feedback is important: response-aware feedback mechanism for background based conversation

RFM The code for the paper: "Feedback is important: response-aware feedback mechanism for background based conversation." Requirements python 3.7 pyto

Jiatao Chen 2 Sep 29, 2022
95.47% on CIFAR10 with PyTorch

Train CIFAR10 with PyTorch I'm playing with PyTorch on the CIFAR10 dataset. Prerequisites Python 3.6+ PyTorch 1.0+ Training # Start training with: py

5k Dec 30, 2022
FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset (CVPR2022)

FaceVerse FaceVerse: a Fine-grained and Detail-controllable 3D Face Morphable Model from a Hybrid Dataset Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang

Lizhen Wang 219 Dec 28, 2022
Pretrained language model and its related optimization techniques developed by Huawei Noah's Ark Lab.

Pretrained Language Model This repository provides the latest pretrained language models and its related optimization techniques developed by Huawei N

HUAWEI Noah's Ark Lab 2.6k Jan 01, 2023
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
A toolkit for Lagrangian-based constrained optimization in Pytorch

Cooper About Cooper is a toolkit for Lagrangian-based constrained optimization in Pytorch. This library aims to encourage and facilitate the study of

Cooper 34 Jan 01, 2023
LIVECell - A large-scale dataset for label-free live cell segmentation

LIVECell dataset This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale data

Sartorius Corporate Research 112 Jan 07, 2023
Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis

Introduction This is an implementation of our paper Supervised 3D Pre-training on Large-scale 2D Natural Image Datasets for 3D Medical Image Analysis.

24 Dec 06, 2022
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

139 Jan 01, 2023
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
A Large Scale Benchmark for Individual Treatment Effect Prediction and Uplift Modeling

large-scale-ITE-UM-benchmark This repository contains code and data to reproduce the results of the paper "A Large Scale Benchmark for Individual Trea

10 Nov 19, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022