NLP and Text Generation Experiments in TensorFlow 2.x / 1.x

Overview
	Code has been run on Google Colab, thanks Google for providing computational resources

Contents


Text Classification

└── finch/tensorflow2/text_classification/imdb
	│
	├── data
	│   └── glove.840B.300d.txt          # pretrained embedding, download and put here
	│   └── make_data.ipynb              # step 1. make data and vocab: train.txt, test.txt, word.txt
	│   └── train.txt  		     # incomplete sample, format <label, text> separated by \t 
	│   └── test.txt   		     # incomplete sample, format <label, text> separated by \t
	│   └── train_bt_part1.txt  	     # (back-translated) incomplete sample, format <label, text> separated by \t
	│
	├── vocab
	│   └── word.txt                     # incomplete sample, list of words in vocabulary
	│	
	└── main
		└── sliced_rnn.ipynb         # step 2: train and evaluate model
		└── ...
└── finch/tensorflow2/text_classification/clue
	│
	├── data
	│   └── make_data.ipynb              # step 1. make data and vocab
	│   └── train.txt  		     # download from clue benchmark
	│   └── test.txt   		     # download from clue benchmark
	│
	├── vocab
	│   └── label.txt                    # list of emotion labels
	│	
	└── main
		└── bert_finetune.ipynb      # step 2: train and evaluate model
		└── ...

Text Matching

└── finch/tensorflow2/text_matching/snli
	│
	├── data
	│   └── glove.840B.300d.txt       # pretrained embedding, download and put here
	│   └── download_data.ipynb       # step 1. run this to download snli dataset
	│   └── make_data.ipynb           # step 2. run this to generate train.txt, test.txt, word.txt 
	│   └── train.txt  		  # incomplete sample, format <label, text1, text2> separated by \t 
	│   └── test.txt   		  # incomplete sample, format <label, text1, text2> separated by \t
	│
	├── vocab
	│   └── word.txt                  # incomplete sample, list of words in vocabulary
	│	
	└── main              
		└── dam.ipynb      	  # step 3. train and evaluate model
		└── esim.ipynb      	  # step 3. train and evaluate model
		└── ......
└── finch/tensorflow2/text_matching/chinese
	│
	├── data
	│   └── make_data.ipynb           # step 1. run this to generate char.txt and char.npy
	│   └── train.csv  		  # incomplete sample, format <text1, text2, label> separated by comma 
	│   └── test.csv   		  # incomplete sample, format <text1, text2, label> separated by comma
	│
	├── vocab
	│   └── cc.zh.300.vec             # pretrained embedding, download and put here
	│   └── char.txt                  # incomplete sample, list of chinese characters
	│   └── char.npy                  # saved pretrained embedding matrix for this task
	│	
	└── main              
		└── pyramid.ipynb      	  # step 2. train and evaluate model
		└── esim.ipynb      	  # step 2. train and evaluate model
		└── ......
└── finch/tensorflow2/text_matching/ant
	│
	├── data
	│   └── make_data.ipynb           # step 1. run this to generate char.txt and char.npy
	│   └── train.json           	  # incomplete sample, format <text1, text2, label> separated by comma 
	│   └── dev.json   		  # incomplete sample, format <text1, text2, label> separated by comma
	│
	├── vocab
	│   └── cc.zh.300.vec             # pretrained embedding, download and put here
	│   └── char.txt                  # incomplete sample, list of chinese characters
	│   └── char.npy                  # saved pretrained embedding matrix for this task
	│	
	└── main              
		└── pyramid.ipynb      	  # step 2. train and evaluate model
		└── bert.ipynb      	  # step 2. train and evaluate model
		└── ......

Intent Detection and Slot Filling

└── finch/tensorflow2/spoken_language_understanding/atis
	│
	├── data
	│   └── glove.840B.300d.txt           # pretrained embedding, download and put here
	│   └── make_data.ipynb               # step 1. run this to generate vocab: word.txt, intent.txt, slot.txt 
	│   └── atis.train.w-intent.iob       # incomplete sample, format <text, slot, intent>
	│   └── atis.test.w-intent.iob        # incomplete sample, format <text, slot, intent>
	│
	├── vocab
	│   └── word.txt                      # list of words in vocabulary
	│   └── intent.txt                    # list of intents in vocabulary
	│   └── slot.txt                      # list of slots in vocabulary
	│	
	└── main              
		└── bigru_clr.ipynb               # step 2. train and evaluate model
		└── ...

Retrieval Dialog


Semantic Parsing

└── finch/tensorflow2/semantic_parsing/tree_slu
	│
	├── data
	│   └── glove.840B.300d.txt     	# pretrained embedding, download and put here
	│   └── make_data.ipynb           	# step 1. run this to generate vocab: word.txt, intent.txt, slot.txt 
	│   └── train.tsv   		  	# incomplete sample, format <text, tokenized_text, tree>
	│   └── test.tsv    		  	# incomplete sample, format <text, tokenized_text, tree>
	│
	├── vocab
	│   └── source.txt                	# list of words in vocabulary for source (of seq2seq)
	│   └── target.txt                	# list of words in vocabulary for target (of seq2seq)
	│	
	└── main
		└── lstm_seq2seq_tf_addons.ipynb           # step 2. train and evaluate model
		└── ......
		

Knowledge Graph Completion

└── finch/tensorflow2/knowledge_graph_completion/wn18
	│
	├── data
	│   └── download_data.ipynb       	# step 1. run this to download wn18 dataset
	│   └── make_data.ipynb           	# step 2. run this to generate vocabulary: entity.txt, relation.txt
	│   └── wn18  		          	# wn18 folder (will be auto created by download_data.ipynb)
	│   	└── train.txt  		  	# incomplete sample, format <entity1, relation, entity2> separated by \t
	│   	└── valid.txt  		  	# incomplete sample, format <entity1, relation, entity2> separated by \t 
	│   	└── test.txt   		  	# incomplete sample, format <entity1, relation, entity2> separated by \t
	│
	├── vocab
	│   └── entity.txt                  	# incomplete sample, list of entities in vocabulary
	│   └── relation.txt                	# incomplete sample, list of relations in vocabulary
	│	
	└── main              
		└── distmult_1-N.ipynb    	# step 3. train and evaluate model
		└── ...

Knowledge Base Question Answering


Multi-hop Question Answering

└── finch/tensorflow1/question_answering/babi
	│
	├── data
	│   └── make_data.ipynb           		# step 1. run this to generate vocabulary: word.txt 
	│   └── qa5_three-arg-relations_train.txt       # one complete example of babi dataset
	│   └── qa5_three-arg-relations_test.txt	# one complete example of babi dataset
	│
	├── vocab
	│   └── word.txt                  		# complete list of words in vocabulary
	│	
	└── main              
		└── dmn_train.ipynb
		└── dmn_serve.ipynb
		└── attn_gru_cell.py

Text Visualization


Recommender System

└── finch/tensorflow1/recommender/movielens
	│
	├── data
	│   └── make_data.ipynb           		# run this to generate vocabulary
	│
	├── vocab
	│   └── user_job.txt
	│   └── user_id.txt
	│   └── user_gender.txt
	│   └── user_age.txt
	│   └── movie_types.txt
	│   └── movie_title.txt
	│   └── movie_id.txt
	│	
	└── main              
		└── dnn_softmax.ipynb
		└── ......

Multi-turn Dialogue Rewriting

└── finch/tensorflow1/multi_turn_rewrite/chinese/
	│
	├── data
	│   └── make_data.ipynb         # run this to generate vocab, split train & test data, make pretrained embedding
	│   └── corpus.txt		# original data downloaded from external
	│   └── train_pos.txt		# processed positive training data after {make_data.ipynb}
	│   └── train_neg.txt		# processed negative training data after {make_data.ipynb}
	│   └── test_pos.txt		# processed positive testing data after {make_data.ipynb}
	│   └── test_neg.txt		# processed negative testing data after {make_data.ipynb}
	│
	├── vocab
	│   └── cc.zh.300.vec		# fastText pretrained embedding downloaded from external
	│   └── char.npy		# chinese characters and their embedding values (300 dim)	
	│   └── char.txt		# list of chinese characters used in this project 
	│	
	└── main              
		└── baseline_lstm_train.ipynb
		└── baseline_lstm_predict.ipynb
		└── ...

Generative Dialog

└── finch/tensorflow1/free_chat/chinese_lccc
	│
	├── data
	│   └── LCCC-base.json           	# raw data downloaded from external
	│   └── LCCC-base_test.json         # raw data downloaded from external
	│   └── make_data.ipynb           	# step 1. run this to generate vocab {char.txt} and data {train.txt & test.txt}
	│   └── train.txt           		# processed text file generated by {make_data.ipynb}
	│   └── test.txt           			# processed text file generated by {make_data.ipynb}
	│
	├── vocab
	│   └── char.txt                	# list of chars in vocabulary for chinese
	│   └── cc.zh.300.vec			# fastText pretrained embedding downloaded from external
	│   └── char.npy			# chinese characters and their embedding values (300 dim)	
	│	
	└── main
		└── lstm_seq2seq_train.ipynb    # step 2. train and evaluate model
		└── lstm_seq2seq_infer.ipynb    # step 4. model inference
		└── ...
  • Task: Large-scale Chinese Conversation Dataset

      Training Data: 5000000 (sampled due to small memory), Testing Data: 19008
    
    • Data

    • Model

      Code Model Env Test Case Perplexity
      <Notebook> Transformer Encoder + LSTM Generator TF1 <Notebook> 42.465
      <Notebook> LSTM Encoder + LSTM Generator TF1 <Notebook> 41.250
      <Notebook> LSTM Encoder + LSTM Pointer-Generator TF1 <Notebook> 36.525
    • If you want to deploy model in Java production

       └── FreeChatInference
       	│
       	├── data
       	│   └── transformer_export/
       	│   └── char.txt
       	│   └── libtensorflow-1.14.0.jar
       	│   └── tensorflow_jni.dll
       	│
       	└── src              
       		└── ModelInference.java
      
      • <Notebook> Java Inference

      • If you don't know the input and output node names in Java, you can display the node names:

         !saved_model_cli show --dir ../model/xxx/1587959473/ --tag_set serve --signature_def serving_default
        
    • Large Pre-trained GPT

      Test Case Model Env Author
      <Notebook> GPT LCCC base TF1 + bert4keras Tsinghua University
      <Notebook> GPT LCCC large TF1 + bert4keras Tsinghua University
      <Notebook> NEZHA LM TF1 + bert4keras Jianlin Su
    • Diverse Response Comparsion

      问题 / 模型回复 Our RNN GPT base GPT large Nezha
      Q: 你好 A: 你好 A: 你好 A: 你好,你好,我是大好人。 A: 您好
      Q: 早上好 A: 早上好 A: 早上好,好久不见 A: 早上好! A: 早啊早啊
      Q: 晚上好 A: 晚上好 A: 你好 A: 好久不见 A: 晚上好!
      Q: 再见 A: 再见 A: 不见 A: 你是不是不爱我了 A: 我要走了
      Q: 好久不见 A: 好久不见 A: 是呀,好久不见。 A: 是啊,好久不见。 A: 是啊,最近怎么样啊
      Q: 想死你了 A: 我也是 A: 我也想你, A: 我不信 A: 哈哈哈哈哈
      Q: 谢谢你 A: 不客气 A: 不用谢 A: 不用 A: 不谢不谢,
      Q: 爱你 A: 爱你 A: 你是爱我 A: 我也爱你, A: 我也爱你,你最美
      Q: 你叫什么名字 A: 你猜 A: 我也想知道 A: 叫你 A: 你是不是想说我的名字太俗了
      Q: 你几岁了 A: 问女孩子年龄可不是绅士所为哦 ~ A: 你猜 A: 你猜 A: 我不知道
      Q: 现在几点了 A: 11点 A: 你说呢? A: 十二点 A: 我也不知道啊
      Q: 今天天气怎么样 A: 下雨了 A: 今天很冷,但是我还是觉得很冷 A: 很好 A: 不错
      Q: 我们现在在哪里 A: 在这里 A: 我在这里等你呢 A: 我不知道你在说什么 A: 在我们宿舍楼下。。。
      Q: 你能给我讲个笑话吗 A: 不能 A: 讲个笑话 A: 讲给谁听 A: 不能
      Q: 你是男孩还是女孩呀 A: 我是萌妹纸 A: 你猜 A: 你猜呀 A: 我是萌妹纸
      Q: 你会几种语言呀 A: 你猜 A: 不会 A: 你猜呀~ A: 只会说一句
      Q: 你能陪我玩吗 A: 可以啊 A: 可以 A: 我可以啊 A: 你猜
      Q: 说话可以大声一点吗 A: 可以 A: 可以的 A: 不要 A: 我不
      Q: 天气真好 A: 是的 A: 是啊! A: 天气好是因为有你 A: 是啊。
      Q: 天气太糟糕了 A: 是啊 A: 是啊 A: 是啊 A: 是的
      Q: 下雨了 A: 是的 A: 你们那边也下雨了 A: 是呀 A: 我也是
      Q: 雨好大 A: 今天下雨了 A: 是啊 A: 是的,好大雨 A: 对呀,我们还穿短袖
      Q: 我讨厌艳阳天 A: 我也讨厌艳阳天 A: 我也是。 A: 我喜欢阴天 A: 我喜欢
      Q: 好晒啊 A: 是啊 A: 是啊 A: 是啊!! A: 是啊,不是很热的
      Q: 今天好冷 A: 多穿点衣服 A: 你们都不来 A: 你那儿也冷了 A: 是啊。
      Q: 今天好热 A: 今天热死了 A: 热死我了 A: 对啊 A: 对啊,我都热疯
      Q: 风好大 A: 是啊 A: 风太大了。。。 A: 你不是在上课嘛 A: 嗯嗯嗯,风好大,冷
      Q: 雾太大了看不清路 A: 雾太大了 A: 哈哈,你这是在逗我笑 A: 我也看不清 A: 你是不是傻啊
      Q: 打雷了好可怕 A: 可怕 A: 我们这边也是,我们这边下雨了,我们这边也没有下雨。 A: 是啊 A: 我们这边下雨了
      Q: 下雪了诶 A: 下雪了? A: 是滴! A: 嗯嗯嗯!!好大的雪!! A: 下了一天了
      Q: 好烦啊 A: 我也好烦 A: 我也是 A: 我好烦 A: 我也是
      Q: 好开心 A: 开心就好 A: 你是不是想我了 A: 是呀 A: 哈哈哈,我也是!
      Q: 太激动了 A: 激动什么 A: 我也激动 A: 哈哈,还是不要了 A: 哈哈
      Q: 我好难过 A: 怎么了? A: 我也是,我们都是 A: 不要难过,我陪你 A: 你怎么难过
      Q: 我想哭 A: 抱抱 A: 抱紧你 A: 我不想哭!你不要想太多! A: 哭吧哭吧,我陪你哭
      Q: 太好笑了 A: 笑死我了 A: 你也笑了? A: 我也觉得 A: 哈哈
      Q: 我好伤心 A: 怎么了 A: 你伤心什么 A: 我也是 A: 你是不是想笑死我!!下次再给你拍
      Q: 心好痛 A: 抱抱 A: 你心痛什么 A: 心碎一地了。 A: 怎么了
      Q: 好累啊 A: 加油 A: 你不会还是一个人在寝室吧 A: 好好休息 A: 累了就睡觉
      Q: 我好疲惫 A: 我也是 A: 我也差不多。。 A: 我好困 A: 你不是一直都很疲惫么
      Q: 我爱你 A: 我也爱你 A: 我也是 A: 我们都爱你 A: 爱我就来见面
      Q: 我讨厌你 A: 我也讨厌你 A: 你不是一直很喜欢我 A: 不是我的 A: 我也讨厌你
      Q: 你真是太棒啦 A: 谢谢 A: 你最棒 A: 你也棒棒哒 A: 谢谢!
      Q: 你好厉害啊 A: 哈哈 A: 是不是 A: 你也不差呀 A: 你也可以的
      Q: 吓死我了 A: 哈哈 A: 我都不敢出门了 A: 哈哈哈哈哈!!! A: 哈哈哈哈哈笑死我了
      Q: 我想回家 A: 我也想回家 A: 我也想!! A: 想家的时候回来,想家的时候离开。 A: 回来吧,家真的好啊!
      Q: 我想爸妈了 A: 我也想爸妈 A: 哈哈 A: 我也想 A: 想我吗
      Q: 不知道小孩在家有没有听话 A: 我也不知道 A: 没有 A: 听话的话肯定是会听话的。 A: 我也是听不懂啊
      Q: 想回家撸猫 A: 我也想回家 A: 你也想啊? A: 我们这也有一个 A: 回呀回呀
Python wrapper for Stanford CoreNLP tools v3.4.1

Python interface to Stanford Core NLP tools v3.4.1 This is a Python wrapper for Stanford University's NLP group's Java-based CoreNLP tools. It can eit

Dustin Smith 610 Sep 07, 2022
This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection"

Splinter This repository contains the code, models and datasets discussed in our paper "Few-Shot Question Answering by Pretraining Span Selection", to

Ori Ram 88 Dec 31, 2022
The implementation of Parameter Differentiation based Multilingual Neural Machine Translation

The implementation of Parameter Differentiation based Multilingual Neural Machine Translation .

Qian Wang 21 Dec 17, 2022
189 Jan 02, 2023
Code for Discovering Topics in Long-tailed Corpora with Causal Intervention.

Code for Discovering Topics in Long-tailed Corpora with Causal Intervention ACL2021 Findings Usage 0. Prepare environment Requirements: python==3.6 te

Xiaobao Wu 8 Dec 16, 2022
File-based TF-IDF: Calculates keywords in a document, using a word corpus.

File-based TF-IDF Calculates keywords in a document, using a word corpus. Why? Because I found myself with hundreds of plain text files, with no way t

Jakob Lindskog 1 Feb 11, 2022
MicBot - MicBot uses Google Translate to speak everyone's chat messages

MicBot MicBot uses Google Translate to speak everyone's chat messages. It can al

2 Mar 09, 2022
無料で使える中品質なテキスト読み上げソフトウェア、VOICEVOXの音声合成エンジン

VOICEVOX ENGINE VOICEVOXの音声合成エンジン。 実態は HTTP サーバーなので、リクエストを送信すればテキスト音声合成できます。 API ドキュメント VOICEVOX ソフトウェアを起動した状態で、ブラウザから

Hiroshiba 3 Jul 05, 2022
Host your own GPT-3 Discord bot

GPT3 Discord Bot Host your own GPT-3 Discord bot i'd host and make the bot invitable myself, however GPT3 terms of service prohibit public use of GPT3

[something hillarious here] 8 Jan 07, 2023
News-Articles-and-Essays - NLP (Topic Modeling and Clustering)

NLP T5 Project proposal Topic Modeling and Clustering of News-Articles-and-Essays Students: Nasser Alshehri Abdullah Bushnag Abdulrhman Alqurashi OVER

2 Jan 18, 2022
中文生成式预训练模型

T5 PEGASUS 中文生成式预训练模型,以mT5为基础架构和初始权重,通过类似PEGASUS的方式进行预训练。 详情可见:https://kexue.fm/archives/8209 Tokenizer 我们将T5 PEGASUS的Tokenizer换成了BERT的Tokenizer,它对中文更

410 Jan 03, 2023
PyTorch implementation of the NIPS-17 paper "Poincaré Embeddings for Learning Hierarchical Representations"

Poincaré Embeddings for Learning Hierarchical Representations PyTorch implementation of Poincaré Embeddings for Learning Hierarchical Representations

Facebook Research 1.6k Dec 29, 2022
New Modeling The Background CodeBase

Modeling the Background for Incremental Learning in Semantic Segmentation This is the updated official PyTorch implementation of our work: "Modeling t

Fabio Cermelli 9 Dec 28, 2022
A spaCy wrapper of OpenTapioca for named entity linking on Wikidata

spaCyOpenTapioca A spaCy wrapper of OpenTapioca for named entity linking on Wikidata. Table of contents Installation How to use Local OpenTapioca Vizu

Universitätsbibliothek Mannheim 80 Jan 03, 2023
Ελληνικά νέα (Python script) / Greek News Feed (Python script)

Ελληνικά νέα (Python script) / Greek News Feed (Python script) Ελληνικά English Το 2017 είχα υλοποιήσει ένα Python script για να εμφανίζει τα τωρινά ν

Loren Kociko 1 Jun 14, 2022
Continuously update some NLP practice based on different tasks.

NLP_practice We will continuously update some NLP practice based on different tasks. prerequisites Software pytorch = 1.10 torchtext = 0.11.0 sklear

0 Jan 05, 2022
NLP codes implemented with Pytorch (w/o library such as huggingface)

NLP_scratch NLP codes implemented with Pytorch (w/o library such as huggingface) scripts ├── models: Neural Network models ├── data: codes for dataloa

3 Dec 28, 2021
LSTC: Boosting Atomic Action Detection with Long-Short-Term Context

LSTC: Boosting Atomic Action Detection with Long-Short-Term Context This Repository contains the code on AVA of our ACM MM 2021 paper: LSTC: Boosting

Tencent YouTu Research 9 Oct 11, 2022
Sample data associated with the Aurora-BP study

The Aurora-BP Study and Dataset This repository contains sample code, sample data, and explanatory information for working with the Aurora-BP dataset

Microsoft 16 Dec 12, 2022
Pangu-Alpha for Transformers

Pangu-Alpha for Transformers Usage Download MindSpore FP32 weights for GPU from here to data/Pangu-alpha_2.6B.ckpt Activate MindSpore environment and

One 5 Oct 01, 2022