NLP and Text Generation Experiments in TensorFlow 2.x / 1.x

Overview
	Code has been run on Google Colab, thanks Google for providing computational resources

Contents


Text Classification

└── finch/tensorflow2/text_classification/imdb
	│
	├── data
	│   └── glove.840B.300d.txt          # pretrained embedding, download and put here
	│   └── make_data.ipynb              # step 1. make data and vocab: train.txt, test.txt, word.txt
	│   └── train.txt  		     # incomplete sample, format <label, text> separated by \t 
	│   └── test.txt   		     # incomplete sample, format <label, text> separated by \t
	│   └── train_bt_part1.txt  	     # (back-translated) incomplete sample, format <label, text> separated by \t
	│
	├── vocab
	│   └── word.txt                     # incomplete sample, list of words in vocabulary
	│	
	└── main
		└── sliced_rnn.ipynb         # step 2: train and evaluate model
		└── ...
└── finch/tensorflow2/text_classification/clue
	│
	├── data
	│   └── make_data.ipynb              # step 1. make data and vocab
	│   └── train.txt  		     # download from clue benchmark
	│   └── test.txt   		     # download from clue benchmark
	│
	├── vocab
	│   └── label.txt                    # list of emotion labels
	│	
	└── main
		└── bert_finetune.ipynb      # step 2: train and evaluate model
		└── ...

Text Matching

└── finch/tensorflow2/text_matching/snli
	│
	├── data
	│   └── glove.840B.300d.txt       # pretrained embedding, download and put here
	│   └── download_data.ipynb       # step 1. run this to download snli dataset
	│   └── make_data.ipynb           # step 2. run this to generate train.txt, test.txt, word.txt 
	│   └── train.txt  		  # incomplete sample, format <label, text1, text2> separated by \t 
	│   └── test.txt   		  # incomplete sample, format <label, text1, text2> separated by \t
	│
	├── vocab
	│   └── word.txt                  # incomplete sample, list of words in vocabulary
	│	
	└── main              
		└── dam.ipynb      	  # step 3. train and evaluate model
		└── esim.ipynb      	  # step 3. train and evaluate model
		└── ......
└── finch/tensorflow2/text_matching/chinese
	│
	├── data
	│   └── make_data.ipynb           # step 1. run this to generate char.txt and char.npy
	│   └── train.csv  		  # incomplete sample, format <text1, text2, label> separated by comma 
	│   └── test.csv   		  # incomplete sample, format <text1, text2, label> separated by comma
	│
	├── vocab
	│   └── cc.zh.300.vec             # pretrained embedding, download and put here
	│   └── char.txt                  # incomplete sample, list of chinese characters
	│   └── char.npy                  # saved pretrained embedding matrix for this task
	│	
	└── main              
		└── pyramid.ipynb      	  # step 2. train and evaluate model
		└── esim.ipynb      	  # step 2. train and evaluate model
		└── ......
└── finch/tensorflow2/text_matching/ant
	│
	├── data
	│   └── make_data.ipynb           # step 1. run this to generate char.txt and char.npy
	│   └── train.json           	  # incomplete sample, format <text1, text2, label> separated by comma 
	│   └── dev.json   		  # incomplete sample, format <text1, text2, label> separated by comma
	│
	├── vocab
	│   └── cc.zh.300.vec             # pretrained embedding, download and put here
	│   └── char.txt                  # incomplete sample, list of chinese characters
	│   └── char.npy                  # saved pretrained embedding matrix for this task
	│	
	└── main              
		└── pyramid.ipynb      	  # step 2. train and evaluate model
		└── bert.ipynb      	  # step 2. train and evaluate model
		└── ......

Intent Detection and Slot Filling

└── finch/tensorflow2/spoken_language_understanding/atis
	│
	├── data
	│   └── glove.840B.300d.txt           # pretrained embedding, download and put here
	│   └── make_data.ipynb               # step 1. run this to generate vocab: word.txt, intent.txt, slot.txt 
	│   └── atis.train.w-intent.iob       # incomplete sample, format <text, slot, intent>
	│   └── atis.test.w-intent.iob        # incomplete sample, format <text, slot, intent>
	│
	├── vocab
	│   └── word.txt                      # list of words in vocabulary
	│   └── intent.txt                    # list of intents in vocabulary
	│   └── slot.txt                      # list of slots in vocabulary
	│	
	└── main              
		└── bigru_clr.ipynb               # step 2. train and evaluate model
		└── ...

Retrieval Dialog


Semantic Parsing

└── finch/tensorflow2/semantic_parsing/tree_slu
	│
	├── data
	│   └── glove.840B.300d.txt     	# pretrained embedding, download and put here
	│   └── make_data.ipynb           	# step 1. run this to generate vocab: word.txt, intent.txt, slot.txt 
	│   └── train.tsv   		  	# incomplete sample, format <text, tokenized_text, tree>
	│   └── test.tsv    		  	# incomplete sample, format <text, tokenized_text, tree>
	│
	├── vocab
	│   └── source.txt                	# list of words in vocabulary for source (of seq2seq)
	│   └── target.txt                	# list of words in vocabulary for target (of seq2seq)
	│	
	└── main
		└── lstm_seq2seq_tf_addons.ipynb           # step 2. train and evaluate model
		└── ......
		

Knowledge Graph Completion

└── finch/tensorflow2/knowledge_graph_completion/wn18
	│
	├── data
	│   └── download_data.ipynb       	# step 1. run this to download wn18 dataset
	│   └── make_data.ipynb           	# step 2. run this to generate vocabulary: entity.txt, relation.txt
	│   └── wn18  		          	# wn18 folder (will be auto created by download_data.ipynb)
	│   	└── train.txt  		  	# incomplete sample, format <entity1, relation, entity2> separated by \t
	│   	└── valid.txt  		  	# incomplete sample, format <entity1, relation, entity2> separated by \t 
	│   	└── test.txt   		  	# incomplete sample, format <entity1, relation, entity2> separated by \t
	│
	├── vocab
	│   └── entity.txt                  	# incomplete sample, list of entities in vocabulary
	│   └── relation.txt                	# incomplete sample, list of relations in vocabulary
	│	
	└── main              
		└── distmult_1-N.ipynb    	# step 3. train and evaluate model
		└── ...

Knowledge Base Question Answering


Multi-hop Question Answering

└── finch/tensorflow1/question_answering/babi
	│
	├── data
	│   └── make_data.ipynb           		# step 1. run this to generate vocabulary: word.txt 
	│   └── qa5_three-arg-relations_train.txt       # one complete example of babi dataset
	│   └── qa5_three-arg-relations_test.txt	# one complete example of babi dataset
	│
	├── vocab
	│   └── word.txt                  		# complete list of words in vocabulary
	│	
	└── main              
		└── dmn_train.ipynb
		└── dmn_serve.ipynb
		└── attn_gru_cell.py

Text Visualization


Recommender System

└── finch/tensorflow1/recommender/movielens
	│
	├── data
	│   └── make_data.ipynb           		# run this to generate vocabulary
	│
	├── vocab
	│   └── user_job.txt
	│   └── user_id.txt
	│   └── user_gender.txt
	│   └── user_age.txt
	│   └── movie_types.txt
	│   └── movie_title.txt
	│   └── movie_id.txt
	│	
	└── main              
		└── dnn_softmax.ipynb
		└── ......

Multi-turn Dialogue Rewriting

└── finch/tensorflow1/multi_turn_rewrite/chinese/
	│
	├── data
	│   └── make_data.ipynb         # run this to generate vocab, split train & test data, make pretrained embedding
	│   └── corpus.txt		# original data downloaded from external
	│   └── train_pos.txt		# processed positive training data after {make_data.ipynb}
	│   └── train_neg.txt		# processed negative training data after {make_data.ipynb}
	│   └── test_pos.txt		# processed positive testing data after {make_data.ipynb}
	│   └── test_neg.txt		# processed negative testing data after {make_data.ipynb}
	│
	├── vocab
	│   └── cc.zh.300.vec		# fastText pretrained embedding downloaded from external
	│   └── char.npy		# chinese characters and their embedding values (300 dim)	
	│   └── char.txt		# list of chinese characters used in this project 
	│	
	└── main              
		└── baseline_lstm_train.ipynb
		└── baseline_lstm_predict.ipynb
		└── ...

Generative Dialog

└── finch/tensorflow1/free_chat/chinese_lccc
	│
	├── data
	│   └── LCCC-base.json           	# raw data downloaded from external
	│   └── LCCC-base_test.json         # raw data downloaded from external
	│   └── make_data.ipynb           	# step 1. run this to generate vocab {char.txt} and data {train.txt & test.txt}
	│   └── train.txt           		# processed text file generated by {make_data.ipynb}
	│   └── test.txt           			# processed text file generated by {make_data.ipynb}
	│
	├── vocab
	│   └── char.txt                	# list of chars in vocabulary for chinese
	│   └── cc.zh.300.vec			# fastText pretrained embedding downloaded from external
	│   └── char.npy			# chinese characters and their embedding values (300 dim)	
	│	
	└── main
		└── lstm_seq2seq_train.ipynb    # step 2. train and evaluate model
		└── lstm_seq2seq_infer.ipynb    # step 4. model inference
		└── ...
  • Task: Large-scale Chinese Conversation Dataset

      Training Data: 5000000 (sampled due to small memory), Testing Data: 19008
    
    • Data

    • Model

      Code Model Env Test Case Perplexity
      <Notebook> Transformer Encoder + LSTM Generator TF1 <Notebook> 42.465
      <Notebook> LSTM Encoder + LSTM Generator TF1 <Notebook> 41.250
      <Notebook> LSTM Encoder + LSTM Pointer-Generator TF1 <Notebook> 36.525
    • If you want to deploy model in Java production

       └── FreeChatInference
       	│
       	├── data
       	│   └── transformer_export/
       	│   └── char.txt
       	│   └── libtensorflow-1.14.0.jar
       	│   └── tensorflow_jni.dll
       	│
       	└── src              
       		└── ModelInference.java
      
      • <Notebook> Java Inference

      • If you don't know the input and output node names in Java, you can display the node names:

         !saved_model_cli show --dir ../model/xxx/1587959473/ --tag_set serve --signature_def serving_default
        
    • Large Pre-trained GPT

      Test Case Model Env Author
      <Notebook> GPT LCCC base TF1 + bert4keras Tsinghua University
      <Notebook> GPT LCCC large TF1 + bert4keras Tsinghua University
      <Notebook> NEZHA LM TF1 + bert4keras Jianlin Su
    • Diverse Response Comparsion

      问题 / 模型回复 Our RNN GPT base GPT large Nezha
      Q: 你好 A: 你好 A: 你好 A: 你好,你好,我是大好人。 A: 您好
      Q: 早上好 A: 早上好 A: 早上好,好久不见 A: 早上好! A: 早啊早啊
      Q: 晚上好 A: 晚上好 A: 你好 A: 好久不见 A: 晚上好!
      Q: 再见 A: 再见 A: 不见 A: 你是不是不爱我了 A: 我要走了
      Q: 好久不见 A: 好久不见 A: 是呀,好久不见。 A: 是啊,好久不见。 A: 是啊,最近怎么样啊
      Q: 想死你了 A: 我也是 A: 我也想你, A: 我不信 A: 哈哈哈哈哈
      Q: 谢谢你 A: 不客气 A: 不用谢 A: 不用 A: 不谢不谢,
      Q: 爱你 A: 爱你 A: 你是爱我 A: 我也爱你, A: 我也爱你,你最美
      Q: 你叫什么名字 A: 你猜 A: 我也想知道 A: 叫你 A: 你是不是想说我的名字太俗了
      Q: 你几岁了 A: 问女孩子年龄可不是绅士所为哦 ~ A: 你猜 A: 你猜 A: 我不知道
      Q: 现在几点了 A: 11点 A: 你说呢? A: 十二点 A: 我也不知道啊
      Q: 今天天气怎么样 A: 下雨了 A: 今天很冷,但是我还是觉得很冷 A: 很好 A: 不错
      Q: 我们现在在哪里 A: 在这里 A: 我在这里等你呢 A: 我不知道你在说什么 A: 在我们宿舍楼下。。。
      Q: 你能给我讲个笑话吗 A: 不能 A: 讲个笑话 A: 讲给谁听 A: 不能
      Q: 你是男孩还是女孩呀 A: 我是萌妹纸 A: 你猜 A: 你猜呀 A: 我是萌妹纸
      Q: 你会几种语言呀 A: 你猜 A: 不会 A: 你猜呀~ A: 只会说一句
      Q: 你能陪我玩吗 A: 可以啊 A: 可以 A: 我可以啊 A: 你猜
      Q: 说话可以大声一点吗 A: 可以 A: 可以的 A: 不要 A: 我不
      Q: 天气真好 A: 是的 A: 是啊! A: 天气好是因为有你 A: 是啊。
      Q: 天气太糟糕了 A: 是啊 A: 是啊 A: 是啊 A: 是的
      Q: 下雨了 A: 是的 A: 你们那边也下雨了 A: 是呀 A: 我也是
      Q: 雨好大 A: 今天下雨了 A: 是啊 A: 是的,好大雨 A: 对呀,我们还穿短袖
      Q: 我讨厌艳阳天 A: 我也讨厌艳阳天 A: 我也是。 A: 我喜欢阴天 A: 我喜欢
      Q: 好晒啊 A: 是啊 A: 是啊 A: 是啊!! A: 是啊,不是很热的
      Q: 今天好冷 A: 多穿点衣服 A: 你们都不来 A: 你那儿也冷了 A: 是啊。
      Q: 今天好热 A: 今天热死了 A: 热死我了 A: 对啊 A: 对啊,我都热疯
      Q: 风好大 A: 是啊 A: 风太大了。。。 A: 你不是在上课嘛 A: 嗯嗯嗯,风好大,冷
      Q: 雾太大了看不清路 A: 雾太大了 A: 哈哈,你这是在逗我笑 A: 我也看不清 A: 你是不是傻啊
      Q: 打雷了好可怕 A: 可怕 A: 我们这边也是,我们这边下雨了,我们这边也没有下雨。 A: 是啊 A: 我们这边下雨了
      Q: 下雪了诶 A: 下雪了? A: 是滴! A: 嗯嗯嗯!!好大的雪!! A: 下了一天了
      Q: 好烦啊 A: 我也好烦 A: 我也是 A: 我好烦 A: 我也是
      Q: 好开心 A: 开心就好 A: 你是不是想我了 A: 是呀 A: 哈哈哈,我也是!
      Q: 太激动了 A: 激动什么 A: 我也激动 A: 哈哈,还是不要了 A: 哈哈
      Q: 我好难过 A: 怎么了? A: 我也是,我们都是 A: 不要难过,我陪你 A: 你怎么难过
      Q: 我想哭 A: 抱抱 A: 抱紧你 A: 我不想哭!你不要想太多! A: 哭吧哭吧,我陪你哭
      Q: 太好笑了 A: 笑死我了 A: 你也笑了? A: 我也觉得 A: 哈哈
      Q: 我好伤心 A: 怎么了 A: 你伤心什么 A: 我也是 A: 你是不是想笑死我!!下次再给你拍
      Q: 心好痛 A: 抱抱 A: 你心痛什么 A: 心碎一地了。 A: 怎么了
      Q: 好累啊 A: 加油 A: 你不会还是一个人在寝室吧 A: 好好休息 A: 累了就睡觉
      Q: 我好疲惫 A: 我也是 A: 我也差不多。。 A: 我好困 A: 你不是一直都很疲惫么
      Q: 我爱你 A: 我也爱你 A: 我也是 A: 我们都爱你 A: 爱我就来见面
      Q: 我讨厌你 A: 我也讨厌你 A: 你不是一直很喜欢我 A: 不是我的 A: 我也讨厌你
      Q: 你真是太棒啦 A: 谢谢 A: 你最棒 A: 你也棒棒哒 A: 谢谢!
      Q: 你好厉害啊 A: 哈哈 A: 是不是 A: 你也不差呀 A: 你也可以的
      Q: 吓死我了 A: 哈哈 A: 我都不敢出门了 A: 哈哈哈哈哈!!! A: 哈哈哈哈哈笑死我了
      Q: 我想回家 A: 我也想回家 A: 我也想!! A: 想家的时候回来,想家的时候离开。 A: 回来吧,家真的好啊!
      Q: 我想爸妈了 A: 我也想爸妈 A: 哈哈 A: 我也想 A: 想我吗
      Q: 不知道小孩在家有没有听话 A: 我也不知道 A: 没有 A: 听话的话肯定是会听话的。 A: 我也是听不懂啊
      Q: 想回家撸猫 A: 我也想回家 A: 你也想啊? A: 我们这也有一个 A: 回呀回呀
Python port of Google's libphonenumber

phonenumbers Python Library This is a Python port of Google's libphonenumber library It supports Python 2.5-2.7 and Python 3.x (in the same codebase,

David Drysdale 3.1k Dec 29, 2022
Yes it's true :broken_heart:

Information WARNING: No longer hosted If you would like to be on this repo's readme simply fork or star it! Forks 1 - Flowzii 2 - Errorcrafter 3 - vk-

Dropout 66 Dec 31, 2022
A BERT-based reverse-dictionary of Korean proverbs

Wisdomify A BERT-based reverse-dictionary of Korean proverbs. 김유빈 : 모델링 / 데이터 수집 / 프로젝트 설계 / back-end 김종윤 : 데이터 수집 / 프로젝트 설계 / front-end Quick Start C

Eu-Bin KIM 94 Dec 08, 2022
Entity Disambiguation as text extraction (ACL 2022)

ExtEnD: Extractive Entity Disambiguation This repository contains the code of ExtEnD: Extractive Entity Disambiguation, a novel approach to Entity Dis

Sapienza NLP group 121 Jan 03, 2023
An easier way to build neural search on the cloud

An easier way to build neural search on the cloud Jina is a deep learning-powered search framework for building cross-/multi-modal search systems (e.g

Jina AI 17.1k Jan 09, 2023
A demo of chinese asr

chinese_asr_demo 一个端到端的中文语音识别模型训练、测试框架 具备数据预处理、模型训练、解码、计算wer等等功能 训练数据 训练数据采用thchs_30,

4 Dec 09, 2021
Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch

Jupyter Notebook tutorials on solving real-world problems with Machine Learning & Deep Learning using PyTorch. Topics: Face detection with Detectron 2, Time Series anomaly detection with LSTM Autoenc

Venelin Valkov 1.8k Dec 31, 2022
Visual Automata is a Python 3 library built as a wrapper for Caleb Evans' Automata library to add more visualization features.

Visual Automata Copyright 2021 Lewi Lie Uberg Released under the MIT license Visual Automata is a Python 3 library built as a wrapper for Caleb Evans'

Lewi Uberg 55 Nov 17, 2022
Beyond Accuracy: Behavioral Testing of NLP models with CheckList

CheckList This repository contains code for testing NLP Models as described in the following paper: Beyond Accuracy: Behavioral Testing of NLP models

Marco Tulio Correia Ribeiro 1.8k Dec 28, 2022
A website which allows you to play with the GPT-2 transformer

transformers A website which allows you to play with the GPT-2 model Built with ❤️ by raphtlw Table of contents Model Setup About Contributors Model T

raphtlw 2 Jan 27, 2022
A tool helps build a talk preview image by combining the given background image and talk event description

talk-preview-img-builder A tool helps build a talk preview image by combining the given background image and talk event description Installation and U

PyCon Taiwan 4 Aug 20, 2022
Open-World Entity Segmentation

Open-World Entity Segmentation Project Website Lu Qi*, Jason Kuen*, Yi Wang, Jiuxiang Gu, Hengshuang Zhao, Zhe Lin, Philip Torr, Jiaya Jia This projec

DV Lab 408 Dec 29, 2022
BERT-based Financial Question Answering System

BERT-based Financial Question Answering System In this example, we use Jina, PyTorch, and Hugging Face transformers to build a production-ready BERT-b

Bithiah Yuan 61 Sep 18, 2022
Smart discord chatbot integrated with Dialogflow

academic-NLP-chatbot Smart discord chatbot integrated with Dialogflow to interact with students naturally and manage different classes in a school. De

Tom Huynh 5 Oct 24, 2022
NLP project that works with news (NER, context generation, news trend analytics)

СоАвтор СоАвтор – платформа и открытый набор инструментов для редакций и журналистов-фрилансеров, который призван сделать процесс создания контента ма

38 Jan 04, 2023
STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch.

st3 STT for TorchScript is a port of Coqui STT based on DeepSpeech to PyTorch. Currently it supports converting pbmm models to pt scripts with integra

Vlad Ki 8 Oct 18, 2021
Research Code for NeurIPS 2020 Spotlight paper "Large-Scale Adversarial Training for Vision-and-Language Representation Learning": UNITER adversarial training part

VILLA: Vision-and-Language Adversarial Training This is the official repository of VILLA (NeurIPS 2020 Spotlight). This repository currently supports

Zhe Gan 109 Dec 31, 2022
nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

nlabel is a library for generating, storing and retrieving tagging information and embedding vectors from various nlp libraries through a unified interface.

Bernhard Liebl 2 Jun 10, 2022
This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab.

Speech-Backbones This is the main repository of open-sourced speech technology by Huawei Noah's Ark Lab. Grad-TTS Official implementation of the Grad-

HUAWEI Noah's Ark Lab 295 Jan 07, 2023
TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

TaCL: Improve BERT Pre-training with Token-aware Contrastive Learning

Yixuan Su 26 Oct 17, 2022