Face Transformer for Recognition

Overview

Face-Transformer

This is the code of Face Transformer for Recognition (https://arxiv.org/abs/2103.14803v2).

Recently there has been great interests of Transformer not only in NLP but also in computer vision. We wonder if transformer can be used in face recognition and whether it is better than CNNs. Therefore, we investigate the performance of Transformer models in face recognition. The models are trained on a large scale face recognition database MS-Celeb-1M and evaluated on several mainstream benchmarks, including LFW, SLLFW, CALFW, CPLFW, TALFW, CFP-FP, AGEDB and IJB-C databases. We demonstrate that Transformer models achieve comparable performance as CNN with similar number of parameters and MACs.

arch

Usage Instructions

1. Preparation

The code is mainly adopted from Vision Transformer, and DeiT. In addition to PyTorch and torchvision, install vit_pytorch by Phil Wang, and package timm==0.3.2 by Ross Wightman. Sincerely appreciate for their contributions.

pip install vit-pytorch
pip install timm==0.3.2

Copy the files of fold "copy-to-vit_pytorch-path" to vit-pytorch path.

.
├── __init__.py
├── vit_face.py
└── vits_face.py

2. Databases

You can download the training databases, MS-Celeb-1M (version ms1m-retinaface), and put it in folder 'Data'.

You can download the testing databases as follows and put them in folder 'eval'.

3. Train Models

  • ViT-P8S8
CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VIT -head CosFace --outdir ./results/ViT-P8S8_ms1m_cosface_s1 --warmup-epochs 1 --lr 3e-4 

CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VIT -head CosFace --outdir ./results/ViT-P8S8_ms1m_cosface_s2 --warmup-epochs 0 --lr 1e-4 -r path_to_model 

CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VIT -head CosFace --outdir ./results/ViT-P8S8_ms1m_cosface_s3 --warmup-epochs 0 --lr 5e-5 -r path_to_model 
  • ViT-P12S8
CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VITs -head CosFace --outdir ./results/ViT-P12S8_ms1m_cosface_s1 --warmup-epochs 1 --lr 3e-4 

CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VITs -head CosFace --outdir ./results/ViT-P12S8_ms1m_cosface_s2 --warmup-epochs 0 --lr 1e-4 -r path_to_model 

CUDA_VISIBLE_DEVICES='0,1,2,3' python3 -u train.py -b 480 -w 0,1,2,3 -d retina -n VITs -head CosFace --outdir ./results/ViT-P12S8_ms1m_cosface_s3 --warmup-epochs 0 --lr 5e-5 -r path_to_model 

4. Pretrained Models and Test Models (on LFW, SLLFW, CALFW, CPLFW, TALFW, CFP_FP, AGEDB)

You can download the following models

You can test Models

python test.py --model ./results/ViT-P12S8_ms1m_cosface/Backbone_VITs_Epoch_2_Batch_12000_Time_2021-03-17-04-05_checkpoint.pth --network VIT 

python test.py --model ./results/ViT-P12S8_ms1m_cosface/Backbone_VITs_Epoch_2_Batch_12000_Time_2021-03-17-04-05_checkpoint.pth --network VITs 
Owner
Zhong Yaoyao
BUPT
Zhong Yaoyao
Latte: Cross-framework Python Package for Evaluation of Latent-based Generative Models

Cross-framework Python Package for Evaluation of Latent-based Generative Models Latte Latte (for LATent Tensor Evaluation) is a cross-framework Python

Karn Watcharasupat 30 Sep 08, 2022
Code for the Population-Based Bandits Algorithm, presented at NeurIPS 2020.

Population-Based Bandits (PB2) Code for the Population-Based Bandits (PB2) Algorithm, from the paper Provably Efficient Online Hyperparameter Optimiza

Jack Parker-Holder 22 Nov 16, 2022
Code for "AutoMTL: A Programming Framework for Automated Multi-Task Learning"

AutoMTL: A Programming Framework for Automated Multi-Task Learning This is the website for our paper "AutoMTL: A Programming Framework for Automated M

Ivy Zhang 40 Dec 04, 2022
Fast, modular reference implementation of Instance Segmentation and Object Detection algorithms in PyTorch.

Faster R-CNN and Mask R-CNN in PyTorch 1.0 maskrcnn-benchmark has been deprecated. Please see detectron2, which includes implementations for all model

Facebook Research 9k Jan 04, 2023
Official implementation of AAAI-21 paper "Label Confusion Learning to Enhance Text Classification Models"

Description: This is the official implementation of our AAAI-21 accepted paper Label Confusion Learning to Enhance Text Classification Models. The str

101 Nov 25, 2022
Experiments on Flood Segmentation on Sentinel-1 SAR Imagery with Cyclical Pseudo Labeling and Noisy Student Training

Flood Detection Challenge This repository contains code for our submission to the ETCI 2021 Competition on Flood Detection (Winning Solution #2). Acco

Siddha Ganju 108 Dec 28, 2022
Official PyTorch implementation for paper Context Matters: Graph-based Self-supervised Representation Learning for Medical Images

Context Matters: Graph-based Self-supervised Representation Learning for Medical Images Official PyTorch implementation for paper Context Matters: Gra

49 Nov 23, 2022
training script for space time memory network

Trainig Script for Space Time Memory Network This codebase implemented training code for Space Time Memory Network with some cyclic features. Requirem

Yuxi Li 100 Dec 20, 2022
pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル

pytorch_remove_ScatterND pytorchのスライス代入操作をonnxに変換する際にScatterNDならないようにするサンプル。 スライスしたtensorにそのまま代入してしまうとScatterNDになるため、計算結果をcatで新しいtensorにする。 python ver

2 Dec 01, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
PyMatting: A Python Library for Alpha Matting

Given an input image and a hand-drawn trimap (top row), alpha matting estimates the alpha channel of a foreground object which can then be composed onto a different background (bottom row).

PyMatting 1.4k Dec 30, 2022
Code for "Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search"

Contextual Non-Local Alignment over Full-Scale Representation for Text-Based Person Search This is an implementation for our paper Contextual Non-Loca

Tencent YouTu Research 50 Dec 03, 2022
Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or columns of a 2d feature map, as a standalone package for Pytorch

Triangle Multiplicative Module - Pytorch Implementation of the Triangle Multiplicative module, used in Alphafold2 as an efficient way to mix rows or c

Phil Wang 22 Oct 28, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
A Python library for working with arbitrary-dimension hypercomplex numbers following the Cayley-Dickson construction of algebras.

Hypercomplex A Python library for working with quaternions, octonions, sedenions, and beyond following the Cayley-Dickson construction of hypercomplex

7 Nov 04, 2022
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022
Lipschitz-constrained Unsupervised Skill Discovery

Lipschitz-constrained Unsupervised Skill Discovery This repository is the official implementation of Seohong Park, Jongwook Choi*, Jaekyeom Kim*, Hong

Seohong Park 17 Dec 18, 2022
A non-linear, non-parametric Machine Learning method capable of modeling complex datasets

Fast Symbolic Regression Symbolic Regression is a non-linear, non-parametric Machine Learning method capable of modeling complex data sets. fastsr aim

VAMSHI CHOWDARY 3 Jun 22, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
This repository contains all source code, pre-trained models related to the paper "An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator"

An Empirical Study on GANs with Margin Cosine Loss and Relativistic Discriminator This is a Pytorch implementation for the paper "An Empirical Study o

Cuong Nguyen 3 Nov 15, 2021