This is the official PyTorch implementation for "Mesa: A Memory-saving Training Framework for Transformers".

Related tags

Deep LearningMesa
Overview

Mesa: A Memory-saving Training Framework for Transformers

This is the official PyTorch implementation for Mesa: A Memory-saving Training Framework for Transformers.

By Zizheng Pan, Peng Chen, Haoyu He, Jing Liu, Jianfei Cai and Bohan Zhuang.

image-20211116105242785

Installation

  1. Create a virtual environment with anaconda.

    conda create -n mesa python=3.7 -y
    conda activate mesa
    
    # Install PyTorch, we use PyTorch 1.7.1 with CUDA 10.1 
    pip install torch==1.7.1+cu101 torchvision==0.8.2+cu101 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
    
    # Install ninja
    pip install ninja
  2. Build and install Mesa.

    # cloen this repo
    git clone https://github.com/zhuang-group/Mesa
    # build
    cd Mesa/
    # You need to have an NVIDIA GPU
    python setup.py develop

Usage

  1. Prepare your policy and save as a text file, e.g. policy.txt.

    on gelu: # layer tag, choices: fc, conv, gelu, bn, relu, softmax, matmul, layernorm
        by_index: all # layer index
        enable: True # enable for compressing
        level: 256 # we adopt 8-bit quantization by default
        ema_decay: 0.9 # the decay rate for running estimates
        
        by_index: 1 2 # e.g. exluding GELU layers that indexed by 1 and 2.
        enable: False
  2. Next, you can wrap your model with Mesa by:

    import mesa as ms
    ms.policy.convert_by_num_groups(model, 3)
    # or convert by group size with ms.policy.convert_by_group_size(model, 64)
    
    # setup compression policy
    ms.policy.deploy_on_init(model, '[path to policy.txt]', verbose=print, override_verbose=False)

    That's all you need to use Mesa for memory saving.

    Note that convert_by_num_groups and convert_by_group_size only recognize nn.XXX, if your code has functional operations, such as [email protected] and F.Softmax, you may need to manually setup these layers. For example:

    # matrix multipcation (before)
    out = Q@K.transpose(-2, -1)
    # with Mesa
    self.mm = ms.MatMul(quant_groups=3)
    out = self.mm(q, k.transpose(-2, -1))
    
    # sofmtax (before)
    attn = attn.softmax(dim=-1)
    # with Mesa
    self.softmax = ms.Softmax(dim=-1, quant_groups=3)
    attn = self.softmax(attn)
  3. You can also target one layer by:

    import mesa as ms
    # previous 
    self.act = nn.GELU()
    # with Mesa
    self.act = ms.GELU(quant_groups=[num of quantization groups])

Demo projects for DeiT and Swin

We provide demo projects to replicate our results of training DeiT and Swin with Mesa, please refer to DeiT-Mesa and Swin-Mesa.

Results on ImageNet

Model Param (M) FLOPs (G) Train Memory Top-1 (%)
DeiT-Ti 5 1.3 4,171 71.9
DeiT-Ti w/ Mesa 5 1.3 1,858 72.1
DeiT-S 22 4.6 8,459 79.8
DeiT-S w/ Mesa 22 4.6 3,840 80.0
DeiT-B 86 17.5 17,691 81.8
DeiT-B w/ Mesa 86 17.5 8,616 81.8
Swin-Ti 29 4.5 11,812 81.3
Swin-Ti w/ Mesa 29 4.5 5,371 81.3
PVT-Ti 13 1.9 7,800 75.1
PVT-Ti w/ Mesa 13 1.9 3,782 74.9

License

This repository is released under the Apache 2.0 license as found in the LICENSE file.

Acknowledgments

This repository has adopted part of the quantization codes from ActNN, we thank the authors for their open-sourced code.

Owner
Zhuang AI Group
Zhuang AI Group
Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners

DART Implementation for ICLR2022 paper Differentiable Prompt Makes Pre-trained Language Models Better Few-shot Learners. Environment

ZJUNLP 83 Dec 27, 2022
Normal Learning in Videos with Attention Prototype Network

Codes_APN Official codes of CVPR21 paper: Normal Learning in Videos with Attention Prototype Network (https://arxiv.org/abs/2108.11055) Overview of ou

11 Dec 13, 2022
Deploy a ML inference service on a budget in less than 10 lines of code.

BudgetML is perfect for practitioners who would like to quickly deploy their models to an endpoint, but not waste a lot of time, money, and effort trying to figure out how to do this end-to-end.

1.3k Dec 25, 2022
SOTR: Segmenting Objects with Transformers [ICCV 2021]

SOTR: Segmenting Objects with Transformers [ICCV 2021] By Ruohao Guo, Dantong Niu, Liao Qu, Zhenbo Li Introduction This is the official implementation

186 Dec 20, 2022
[ICCV 2021 Oral] PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers

PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers Created by Xumin Yu*, Yongming Rao*, Ziyi Wang, Zuyan Liu, Jiwen Lu, Jie Zhou

Xumin Yu 317 Dec 26, 2022
Must-read Papers on Physics-Informed Neural Networks.

PINNpapers Contributed by IDRL lab. Introduction Physics-Informed Neural Network (PINN) has achieved great success in scientific computing since 2017.

IDRL 330 Jan 07, 2023
Ian Covert 130 Jan 01, 2023
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
Official PyTorch repo for JoJoGAN: One Shot Face Stylization

JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad

1.3k Dec 29, 2022
Serving PyTorch 1.0 Models as a Web Server in C++

Serving PyTorch Models in C++ This repository contains various examples to perform inference using PyTorch C++ API. Run git clone https://github.com/W

Onur Kaplan 223 Jan 04, 2023
Learning Modified Indicator Functions for Surface Reconstruction

Learning Modified Indicator Functions for Surface Reconstruction In this work, we propose a learning-based approach for implicit surface reconstructio

4 Apr 18, 2022
i-RevNet Pytorch Code

i-RevNet: Deep Invertible Networks Pytorch implementation of i-RevNets. i-RevNets define a family of fully invertible deep networks, built from a succ

Jörn Jacobsen 378 Dec 06, 2022
A transformer model to predict pathogenic mutations

MutFormer MutFormer is an application of the BERT (Bidirectional Encoder Representations from Transformers) NLP (Natural Language Processing) model wi

Wang Genomics Lab 2 Nov 29, 2022
School of Artificial Intelligence at the Nanjing University (NJU)School of Artificial Intelligence at the Nanjing University (NJU)

F-Principle This is an exercise problem of the digital signal processing (DSP) course at School of Artificial Intelligence at the Nanjing University (

Thyrix 5 Nov 23, 2022
The Wearables Development Toolkit - a development environment for activity recognition applications with sensor signals

Wearables Development Toolkit (WDK) The Wearables Development Toolkit (WDK) is a framework and set of tools to facilitate the iterative development of

Juan Haladjian 114 Nov 27, 2022
TensorFlow implementation of Elastic Weight Consolidation

Elastic weight consolidation Introduction A TensorFlow implementation of elastic weight consolidation as presented in Overcoming catastrophic forgetti

James Stokes 67 Oct 11, 2022
Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective

Unofficial pytorch implementation of the paper "Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective"

16 Nov 21, 2022
Taichi Course Homework Template

太极图形课S1-标题部分 这个作业未来或将是你的开源项目,标题的内容可以来自作业中的核心关键词,让读者一眼看出你所完成的工作/做出的好玩demo 如果暂时未想好,起名时可以参考“太极图形课S1-xxx作业” 如下是作业(项目)展开说明的方法,可以帮大家理清思路,并且也对读者非常友好,请小伙伴们多多参

TaichiCourse 30 Nov 19, 2022
Manifold Alignment for Semantically Aligned Style Transfer

Manifold Alignment for Semantically Aligned Style Transfer [Paper] Getting Started MAST has been tested on CentOS 7.6 with python = 3.6. It supports

35 Nov 14, 2022
CS506-Spring2022 - Code and Slides for Boston University CS 506

CS 506 - Computational Tools for Data Science Code, slides, and notes for Boston

Lance Galletti 17 May 06, 2022