Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Overview

Reconstructing 3D Human Pose by Watching Humans in the Mirror

report
Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou
CVPR 2021 Oral


The videos are from Youtube and Douyin. Please contact us for any copyright issue.

News

  • We build a website for a fast preview of our dataset. The whole dataset will be released later.

Features

In this paper, we introduce the new task of reconstructing 3D human pose from a single image in which we can see the person and the person’s image through a mirror.

This implementation:

  • has the demo of our optimization-based approach implemented purely in PyTorch.
  • provides a method to estimate the surface normal of the mirror from vanishing points.
  • provides an annotator to label the mirror edges for the vanishing points.
  • can estimate the focal length of the Internet mirror images.

Installation

This repo has a close relation with EasyMocap. Please refer to our EasyMocap project for installation.

Demo

Download our zju-m-test.zip and run the following code:

# set the data path
data=<path_to_sample>/zju-m-demo
out=<path_to_sample>/zju-m-demo-output
# extract the video frames
python3 scripts/preprocess/extract_video.py ${data}
# Run demo on videos
python3 apps/demo/1v1p_mirror.py ${data} --out ${out} --vis_smpl --video

Mirrored-Human Dataset (Coming Soon)

Due to the license limitation, we cannot share the raw data directly. We are working hard to organize the Mirrored-Human dataset in terms of url links and timestamps.

See Build Your Internet Dataset if you can't wait for our release.

Annotator

We also provide the annotator metioned in our paper.

The first row shows that we label the edges of the mirror and calculate the vanishing point by the human body automaticly. The intrisic camera parameter can be calculated by this two vanishing points.

The second row shows that to obtain a more accurate vanishing points and camera parameters, we can label the parallel lines in the scene, for example the door, the grid in the ground, and the door.


See EasyMocap/apps/annotator for more instructions.

Build Custom Internet Dataset

See doc/internet.md for more instructions.

Build Custom Evaluation Dataset (Multi-View)

This part is provided for the researchers who want to:

  1. capture more accurate human motion with multiple cameras and a mirror
  2. build a different evaluation dataset

See doc/custom.md for more instructions.

Evaluation

To evaluate the reconstruction part in our paper, see doc/evaluation.md.

Contact

Please open an issue if you have any questions. We appreciate all contributions to improve our project.

If you find some videos that we didn't notice, please tell us.

Citation

@inproceedings{fang2021mirrored,
  title={Reconstructing 3D Human Pose by Watching Humans in the Mirror},
  author={Fang, Qi and Shuai, Qing and Dong, Junting and Bao, Hujun and Zhou, Xiaowei},
  booktitle={CVPR},
  year={2021}
}

Acknowledgement

This project is build on our EasyMocap. We also would like to thank Jianan Zhen and Yuhao Chen for their advice for the paper. Sincere thanks to the performers (Yuji Chen and Hao Xu) in the evaluation dataset and people who uploaded the mirror-human videos to the Internet.

Recommendations to other works from our group

Welcome to checkout our work on learning-based feature matching (LoFTR) and reconstruction (NeuralBody and NeuralRecon) in CVPR 2021.

Owner
ZJU3DV
ZJU3DV is a research group of State Key Lab of CAD&CG, Zhejiang University. We focus on the research of 3D computer vision, SLAM and AR.
ZJU3DV
Stochastic Extragradient: General Analysis and Improved Rates

Stochastic Extragradient: General Analysis and Improved Rates This repository is the official implementation of the paper "Stochastic Extragradient: G

Hugo Berard 4 Nov 11, 2022
Official repository for MixFaceNets: Extremely Efficient Face Recognition Networks

MixFaceNets This is the official repository of the paper: MixFaceNets: Extremely Efficient Face Recognition Networks. (Accepted in IJCB2021) https://i

Fadi Boutros 51 Dec 13, 2022
CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network)

CasualHealthcare's Pneumonia detection with Artificial Intelligence (Convolutional Neural Network) This is PneumoniaDiagnose, an artificially intellig

Azhaan 2 Jan 03, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
This project is the PyTorch implementation of our CVPR 2022 paper:

Requirements and Dependency Install PyTorch with CUDA (for GPU). (Experiments are validated on python 3.8.11 and pytorch 1.7.0) (For visualization if

Lei Huang 23 Nov 29, 2022
Franka Emika Panda manipulator kinematics&dynamics simulation

pybullet_sim_panda Pybullet simulation environment for Franka Emika Panda Dependency pybullet, numpy, spatial_math_mini Simple example (please check s

0 Jan 20, 2022
Code for generating the figures in the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Linearly Classified Under All Possible Views?"

Code for running simulations for the paper "Capacity of Group-invariant Linear Readouts from Equivariant Representations: How Many Objects can be Lin

Matthew Farrell 1 Nov 22, 2022
YOLOX Win10 Project

Introduction 这是一个用于Windows训练YOLOX的项目,相比于官方项目,做了一些适配和修改: 1、解决了Windows下import yolox失败,No such file or directory: 'xxx.xml'等路径问题 2、CUDA out of memory等显存不

5 Jun 08, 2022
Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization".

SAPE Project page Paper Official implementation for the paper "SAPE: Spatially-Adaptive Progressive Encoding for Neural Optimization". Environment Cre

36 Dec 09, 2022
Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking."

Expert-Linking Pytorch implementation of the paper "COAD: Contrastive Pre-training with Adversarial Fine-tuning for Zero-shot Expert Linking." This is

BoChen 12 Jan 01, 2023
Code for "Graph-Evolving Meta-Learning for Low-Resource Medical Dialogue Generation". [AAAI 2021]

Graph Evolving Meta-Learning for Low-resource Medical Dialogue Generation Code to be further cleaned... This repo contains the code of the following p

Shuai Lin 29 Nov 01, 2022
这是一个yolox-keras的源码,可以用于训练自己的模型。

YOLOX:You Only Look Once目标检测模型在Keras当中的实现 目录 性能情况 Performance 实现的内容 Achievement 所需环境 Environment 小技巧的设置 TricksSet 文件下载 Download 训练步骤 How2train 预测步骤 Ho

Bubbliiiing 64 Nov 10, 2022
Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics

[AAAI2022] Detecting Human-Object Interactions with Object-Guided Cross-Modal Calibrated Semantics Overall pipeline of OCN. Paper Link: [arXiv] [AAAI

13 Nov 21, 2022
The official repo of the CVPR2021 oral paper: Representative Batch Normalization with Feature Calibration

Representative Batch Normalization (RBN) with Feature Calibration The official implementation of the CVPR2021 oral paper: Representative Batch Normali

Open source projects of ShangHua-Gao 76 Nov 09, 2022
Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
Source code and data from the RecSys 2020 article "Carousel Personalization in Music Streaming Apps with Contextual Bandits" by W. Bendada, G. Salha and T. Bontempelli

Carousel Personalization in Music Streaming Apps with Contextual Bandits - RecSys 2020 This repository provides Python code and data to reproduce expe

Deezer 48 Jan 02, 2023
Chinese Mandarin tts text-to-speech 中文 (普通话) 语音 合成 , by fastspeech 2 , implemented in pytorch, using waveglow as vocoder,

Chinese mandarin text to speech based on Fastspeech2 and Unet This is a modification and adpation of fastspeech2 to mandrin(普通话). Many modifications t

291 Jan 02, 2023
Code for "Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification", ECCV 2020 Spotlight

Learning From Multiple Experts: Self-paced Knowledge Distillation for Long-tailed Classification Implementation of "Learning From Multiple Experts: Se

27 Nov 05, 2022
Python implementation of a live deep learning based age/gender/expression recognizer

TUT live age estimator Python implementation of a live deep learning based age/gender/smile/celebrity twin recognizer. All components use convolutiona

Heikki Huttunen 80 Nov 21, 2022
Object detection GUI based on PaddleDetection

PP-Tracking GUI界面测试版 本项目是基于飞桨开源的实时跟踪系统PP-Tracking开发的可视化界面 在PaddlePaddle中加入pyqt进行GUI页面研发,可使得整个训练过程可视化,并通过GUI界面进行调参,模型预测,视频输出等,通过多种类型的识别,简化整体预测流程。 GUI界面

杨毓栋 68 Jan 02, 2023