Code for "Reconstructing 3D Human Pose by Watching Humans in the Mirror", CVPR 2021 oral

Overview

Reconstructing 3D Human Pose by Watching Humans in the Mirror

report
Qi Fang*, Qing Shuai*, Junting Dong, Hujun Bao, Xiaowei Zhou
CVPR 2021 Oral


The videos are from Youtube and Douyin. Please contact us for any copyright issue.

News

  • We build a website for a fast preview of our dataset. The whole dataset will be released later.

Features

In this paper, we introduce the new task of reconstructing 3D human pose from a single image in which we can see the person and the person’s image through a mirror.

This implementation:

  • has the demo of our optimization-based approach implemented purely in PyTorch.
  • provides a method to estimate the surface normal of the mirror from vanishing points.
  • provides an annotator to label the mirror edges for the vanishing points.
  • can estimate the focal length of the Internet mirror images.

Installation

This repo has a close relation with EasyMocap. Please refer to our EasyMocap project for installation.

Demo

Download our zju-m-test.zip and run the following code:

# set the data path
data=<path_to_sample>/zju-m-demo
out=<path_to_sample>/zju-m-demo-output
# extract the video frames
python3 scripts/preprocess/extract_video.py ${data}
# Run demo on videos
python3 apps/demo/1v1p_mirror.py ${data} --out ${out} --vis_smpl --video

Mirrored-Human Dataset (Coming Soon)

Due to the license limitation, we cannot share the raw data directly. We are working hard to organize the Mirrored-Human dataset in terms of url links and timestamps.

See Build Your Internet Dataset if you can't wait for our release.

Annotator

We also provide the annotator metioned in our paper.

The first row shows that we label the edges of the mirror and calculate the vanishing point by the human body automaticly. The intrisic camera parameter can be calculated by this two vanishing points.

The second row shows that to obtain a more accurate vanishing points and camera parameters, we can label the parallel lines in the scene, for example the door, the grid in the ground, and the door.


See EasyMocap/apps/annotator for more instructions.

Build Custom Internet Dataset

See doc/internet.md for more instructions.

Build Custom Evaluation Dataset (Multi-View)

This part is provided for the researchers who want to:

  1. capture more accurate human motion with multiple cameras and a mirror
  2. build a different evaluation dataset

See doc/custom.md for more instructions.

Evaluation

To evaluate the reconstruction part in our paper, see doc/evaluation.md.

Contact

Please open an issue if you have any questions. We appreciate all contributions to improve our project.

If you find some videos that we didn't notice, please tell us.

Citation

@inproceedings{fang2021mirrored,
  title={Reconstructing 3D Human Pose by Watching Humans in the Mirror},
  author={Fang, Qi and Shuai, Qing and Dong, Junting and Bao, Hujun and Zhou, Xiaowei},
  booktitle={CVPR},
  year={2021}
}

Acknowledgement

This project is build on our EasyMocap. We also would like to thank Jianan Zhen and Yuhao Chen for their advice for the paper. Sincere thanks to the performers (Yuji Chen and Hao Xu) in the evaluation dataset and people who uploaded the mirror-human videos to the Internet.

Recommendations to other works from our group

Welcome to checkout our work on learning-based feature matching (LoFTR) and reconstruction (NeuralBody and NeuralRecon) in CVPR 2021.

Owner
ZJU3DV
ZJU3DV is a research group of State Key Lab of CAD&CG, Zhejiang University. We focus on the research of 3D computer vision, SLAM and AR.
ZJU3DV
571 Dec 25, 2022
[CVPR2021] The source code for our paper 《Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Learning》.

TBE The source code for our paper "Removing the Background by Adding the Background: Towards Background Robust Self-supervised Video Representation Le

Jinpeng Wang 150 Dec 28, 2022
Official implementation for "QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation" (CVPR 2022)

QS-Attn: Query-Selected Attention for Contrastive Learning in I2I Translation (CVPR2022) https://arxiv.org/abs/2203.08483 Unpaired image-to-image (I2I

Xueqi Hu 50 Dec 16, 2022
Contextualized Perturbation for Textual Adversarial Attack, NAACL 2021

Contextualized Perturbation for Textual Adversarial Attack Introduction This is a PyTorch implementation of Contextualized Perturbation for Textual Ad

cookielee77 30 Jan 01, 2023
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
Pre-Training 3D Point Cloud Transformers with Masked Point Modeling

Point-BERT: Pre-Training 3D Point Cloud Transformers with Masked Point Modeling Created by Xumin Yu*, Lulu Tang*, Yongming Rao*, Tiejun Huang, Jie Zho

Lulu Tang 306 Jan 06, 2023
Patch-Based Deep Autoencoder for Point Cloud Geometry Compression

Patch-Based Deep Autoencoder for Point Cloud Geometry Compression Overview The ever-increasing 3D application makes the point cloud compression unprec

17 Dec 05, 2022
Official Implementation of "Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras"

Multi Camera Pig Tracking Official Implementation of Tracking Grow-Finish Pigs Across Large Pens Using Multiple Cameras CVPR2021 CV4Animals Workshop P

44 Jan 06, 2023
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
Graph parsing approach to structured sentiment analysis.

Fine-grained Sentiment Analysis as Dependency Graph Parsing This repository contains the code and datasets described in following paper: Fine-grained

Jeremy Barnes 36 Dec 12, 2022
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023
Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design"

Unofficial implementation of "Coordinate Attention for Efficient Mobile Network Design". CoordAttention tensorflow slim

Billy 9 Aug 22, 2022
This repository contains all data used for writing a research paper Multiple Object Trackers in OpenCV: A Benchmark, presented in ISIE 2021 conference in Kyoto, Japan.

OpenCV-Multiple-Object-Tracking Python is version 3.6.7 to install opencv: pip uninstall opecv-python pip uninstall opencv-contrib-python pip install

6 Dec 19, 2021
PGPortfolio: Policy Gradient Portfolio, the source code of "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem"(https://arxiv.org/pdf/1706.10059.pdf).

This is the original implementation of our paper, A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem (arXiv:1706.1

Zhengyao Jiang 1.5k Dec 29, 2022
Official code for 'Robust Siamese Object Tracking for Unmanned Aerial Manipulator' and offical introduction to UAMT100 benchmark

SiamSA: Robust Siamese Object Tracking for Unmanned Aerial Manipulator Demo video 📹 Our video on Youtube and bilibili demonstrates the evaluation of

Intelligent Vision for Robotics in Complex Environment 12 Dec 18, 2022
Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation (ICCV 2021)

Orthogonal Jacobian Regularization for Unsupervised Disentanglement in Image Generation Home | PyTorch BigGAN Discovery | TensorFlow ProGAN Regulariza

Yuxiang Wei 54 Dec 30, 2022
Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network

Speech Separation Using an Asynchronous Fully Recurrent Convolutional Neural Network This repository is the official implementation of Speech Separati

Kai Li (李凯) 116 Nov 09, 2022