The Noise Contrastive Estimation for softmax output written in Pytorch

Overview

An NCE implementation in pytorch

About NCE

Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computational cost of large softmax layer. The basic idea is to convert the prediction problem into classification problem at training stage. It has been proved that these two criterions converges to the same minimal point as long as noise distribution is close enough to real one.

NCE bridges the gap between generative models and discriminative models, rather than simply speedup the softmax layer. With NCE, you can turn almost anything into posterior with less effort (I think).

Refs:

NCE:

http://www.cs.helsinki.fi/u/ahyvarin/papers/Gutmann10AISTATS.pdf

NCE on rnnlm:

https://pdfs.semanticscholar.org/144e/357b1339c27cce7a1e69f0899c21d8140c1f.pdf

Comparison with other methods

A review of softmax speedup methods:

http://ruder.io/word-embeddings-softmax/

NCE vs. IS (Importance Sampling): Nce is a binary classification while IS is sort of multi-class classification problem.

http://demo.clab.cs.cmu.edu/cdyer/nce_notes.pdf

NCE vs. GAN (Generative Adversarial Network):

https://arxiv.org/abs/1412.6515

On improving NCE

Sampling methods

In NCE, unigram distribution is usually used to approximate the noise distribution because it's fast to sample from. Sampling from a unigram is equal to multinomial sampling, which is of complexity $O(\log(N))$ via binary search tree. The cost of sampling becomes significant when noise ratio increases.

Since the unigram distribution can be obtained before training and remains unchanged across training, some works are proposed to make use of this property to speedup the sampling procedure. Alias method is one of them.

diagram of constructing auxiliary data structure

By constructing data structures, alias method can reduce the sampling complexity from $O(log(N))$ to $O(1)$, and it's easy to parallelize.

Refs:

alias method:

https://hips.seas.harvard.edu/blog/2013/03/03/the-alias-method-efficient-sampling-with-many-discrete-outcomes/

Generic NCE (full-NCE)

Conventional NCE only perform the contrasting on linear(softmax) layer, that is, given an input of a linear layer, the model outputs are $p(noise|input)$ and $p(target|input)$. In fact NCE can be applied to more general situations where models are capable to output likelihood values for both real data and noise data.

In this code base, I use a variant of generic NCE named full-NCE (f-NCE) to clarify. Unlike normal NCE, f-NCE samples the noises at input embedding.

Refs:

whole sentence language model by IBM (ICASSP2018)

Bi-LSTM language model by speechlab,SJTU (ICSLP2016?)

Batched NCE

Conventional NCE requires different noise samples per data token. Such computational pattern is not fully GPU-efficient because it needs batched matrix multiplication. A trick is to share the noise samples across the whole mini-batch, thus sparse batched matrix multiplication is converted to more efficient dense matrix multiplication. The batched NCE is already supported by Tensorflow.

A more aggressive approach is to called self contrasting (named by myself). Instead of sampling from noise distribution, the noises are simply the other training tokens the within the same mini-batch.

Ref:

batched NCE

https://arxiv.org/pdf/1708.05997.pdf

self contrasting:

https://www.isi.edu/natural-language/mt/simple-fast-noise.pdf

Run the word language model example

There's an example illustrating how to use the NCE module in example folder. This example is forked from the pytorch/examples repo.

Requirements

Please run pip install -r requirements first to see if you have the required python lib.

  • tqdm is used for process bar during training
  • dill is a more flexible replacement for pickle

NCE related Arguments

  • --nce: whether to use NCE as approximation
  • --noise-ratio <50>: numbers of noise samples per batch, the noise is shared among the tokens in a single batch, for training speed.
  • --norm-term <9>: the constant normalization term Ln(z)
  • --index-module <linear>: index module to use for NCE module (currently and available, does not support PPL calculating )
  • --train: train or just evaluation existing model
  • --vocab <None>: use vocabulary file if specified, otherwise use the words in train.txt
  • --loss [full, nce, sampled, mix]: choose one of the loss type for training, the loss is converted to full for PPL evaluation automatically.

Examples

Run NCE criterion with linear module:

python main.py --cuda --noise-ratio 10 --norm-term 9 --nce --train

Run NCE criterion with gru module:

python main.py --cuda --noise-ratio 10 --norm-term 9 --nce --train --index-module gru

Run conventional CE criterion:

python main.py --cuda --train

A small benchmark in swbd+fisher dataset

It's a performance showcase. The dataset is not bundled in this repo however. The model is trained on concatenated sentences,but the hidden states are not passed across batches. An <s> is inserted between sentences. The model is evaluated on <s> padded sentences separately.

Generally a model trained on concatenated sentences performs slightly worse than the one trained on separate sentences. But we saves 50% of training time by reducing the sentence padding operation.

dataset statistics

  • training samples: 2200000 sentences, 22403872 words
  • built vocabulary size: ~30K

testbed

  • 1080 Ti
  • i7 7700K
  • pytorch-0.4.0
  • cuda-8.0
  • cudnn-6.0.1

how to run:

python main.py --train --batch-size 96 --cuda --loss nce --noise-ratio 500 --nhid 300 \
  --emsize 300 --log-interval 1000 --nlayers 1 --dropout 0 --weight-decay 1e-8 \
  --data data/swb --min-freq 3 --lr 2 --save nce-500-swb --concat

Running time

  • crossentropy: 6.5 mins/epoch (56K tokens/sec)
  • nce: 2 mins/epoch (187K tokens/sec)

performance

The rescore is performed on swbd 50-best, thanks to HexLee.

training loss type evaluation type PPL WER
3gram normed ?? 19.4
CE(no concat) normed(full) 53 13.1
CE normed(full) 55 13.3
NCE unnormed(NCE) invalid 13.4
NCE normed(full) 55 13.4
importance sample normed(full) 55 13.4
importance sample sampled(500) invalid 19.0(worse than w/o rescore)

File structure

  • example/log/: some log files of this scripts
  • nce/: the NCE module wrapper
    • nce/nce_loss.py: the NCE loss
    • nce/alias_multinomial.py: alias method sampling
    • nce/index_linear.py: an index module used by NCE, as a replacement for normal Linear module
    • nce/index_gru.py: an index module used by NCE, as a replacement for the whole language model module
  • sample.py: a simple script for NCE linear.
  • example: a word langauge model sample to use NCE as loss.
    • example/vocab.py: a wrapper for vocabulary object
    • example/model.py: the wrapper of all nn.Modules.
    • example/generic_model.py: the model wrapper for index_gru NCE module
    • example/main.py: entry point
    • example/utils.py: some util functions for better code structure

Modified README from Pytorch/examples

This example trains a multi-layer LSTM on a language modeling task. By default, the training script uses the PTB dataset, provided.

python main.py --train --cuda --epochs 6        # Train a LSTM on PTB with CUDA

The model will automatically use the cuDNN backend if run on CUDA with cuDNN installed.

During training, if a keyboard interrupt (Ctrl-C) is received, training is stopped and the current model is evaluated against the test dataset.

The main.py script accepts the following arguments:

optional arguments:
  -h, --help         show this help message and exit
  --data DATA        location of the data corpus
  --emsize EMSIZE    size of word embeddings
  --nhid NHID        humber of hidden units per layer
  --nlayers NLAYERS  number of layers
  --lr LR            initial learning rate
  --lr-decay         learning rate decay when no progress is observed on validation set
  --weight-decay     weight decay(L2 normalization)
  --clip CLIP        gradient clipping
  --epochs EPOCHS    upper epoch limit
  --batch-size N     batch size
  --dropout DROPOUT  dropout applied to layers (0 = no dropout)
  --seed SEED        random seed
  --cuda             use CUDA
  --log-interval N   report interval
  --save SAVE        path to save the final model
  --bptt             max length of truncated bptt
  --concat           use concatenated sentence instead of individual sentence

CHANGELOG

  • 2019.09.09: Improve numeric stability by directly calculation on logits
Comments
  • truncated bptt without padding?

    truncated bptt without padding?

    Hi,

    Thanks for the great example. I noticed that you pad sentences to the max length per mini-batch, which is a bit different from the truncated bptt approach of the original word_language_model without NCE on pytorch. I wonder if you have compared the two approach and investigated if it makes a difference in terms of the final ppl?

    I'm also interested to know how much better this model can be on the ptb dataset. I'm also reading the torch blog post on NCE

    opened by eric-haibin-lin 2
  • Error in NCE expression?

    Error in NCE expression?

    In line 227 of nce_loss.py: logit_true = logit_model - logit_noise - math.log(self.noise_ratio), but this is not the same as the log of line 223:# p_true = logit_model.exp() / (logit_model.exp() + self.noise_ratio * logit_noise.exp()) where is the logit_model in the denominator? shouldn't be logit_true = logit_model - log( logit_model.exp() + self.noise_ratio * logit_noise.exp())?

    opened by bczhu 1
  • why the labels in sampled_softmax_loss func are all zero?

    why the labels in sampled_softmax_loss func are all zero?

    I read the code in nce_loss.py:

        def sampled_softmax_loss(self, logit_target_in_model, logit_noise_in_model, logit_noise_in_noise, logit_target_in_noise):
            """Compute the sampled softmax loss based on the tensorflow's impl"""
            logits = torch.cat([logit_target_in_model.unsqueeze(2), logit_noise_in_model], dim=2)
            q_logits = torch.cat([logit_target_in_noise.unsqueeze(2), logit_noise_in_noise], dim=2)
            # subtract Q for correction of biased sampling
            logits = logits - q_logits
            labels = torch.zeros_like(logits.narrow(2, 0, 1)).squeeze(2).long()
            loss = self.ce(
                logits.view(-1, logits.size(-1)),
                labels.view(-1),
            ).view_as(labels)
    
            return loss
    

    The labels are created by 'torch.zeros_like' function, so they are all zeros. Is this a bug? Because the target label should be one?

    opened by universewill 1
  • Why the nec_linear output loss while output prob for testing?

    Why the nec_linear output loss while output prob for testing?

    i don't understand the code below in sample.py:

    # training mode
    loss = nce_linear(target, input).mean()
    print(loss.item())
    
    # evaluation mode for fast probability computation
    nce_linear.eval()
    prob = nce_linear(target, input).mean()
    print(prob.item())
    

    Besides, why need target input parameter for inference?

    opened by universewill 1
  • Why need to sub math.log(self.noise_ratio)

    Why need to sub math.log(self.noise_ratio)

    Hi Stonesjtu,

    Thanks for the sharing this NCE implement. I have a question about details. I'd like to know why we need to sub math.log(self.noise_ratio) here: https://github.com/Stonesjtu/Pytorch-NCE/blob/1fae107a92e24e39f25dd69b766806709c70d414/nce/nce_loss.py#L228

    In this tutorial https://www.tensorflow.org/extras/candidate_sampling.pdf, see the Table of Candidate Sampling Algorithms. The input to training loss of NCE is G(x, y) = F(x, y) - log(Q(y|x)).

    Thanks, Bin

    opened by gbuion 1
  • Target Sample can be included in Noise sample

    Target Sample can be included in Noise sample

    Hello. Thanks you for your NCE code in pytorch. It is very helpful. I have some question about noise sampling. In your code, target sample can be sampled as noise sample. And "K" noise sample can be overlap. Is it OK ? I think it is not valid in theory, but practically OK. Do you have any idea for this ?

    opened by adonisues 1
  • main.py does not run 'as is' on penn data

    main.py does not run 'as is' on penn data

    Hi there,

    I'm trying out your code and couldn't run it 'as is' on penn data. I changed the import of data_sms to data in main.py. Maybe you left this from some tryouts on another dataset?

    Thanks for your implementation anyways. F

    opened by francoishernandez 1
  • why squeeze here?

    why squeeze here?

    Hi, I think there is a bug here:

    https://github.com/Stonesjtu/Pytorch-NCE/blob/862afc666445dca4ce9d24a3eb1e073255edb92e/nce.py#L198

    For RNN model which the last layer before softmax has shape [B * N * D] where time steps N>1, I believe the squeeze do not have any effect. Maybe for batch size B=1? If that is the case, squeeze(0) might be a better choice.

    I am using your code for predicting the last state (in other words, N=1). The squeeze here will give a model_loss.shape = (B , 1) and noise_loss.shape = (B,) and then the total loss.shape = (B, B), which should be (B,1) I think.

    opened by chaoqing 3
Releases(neat-nce)
  • neat-nce(Nov 15, 2017)

    • The main file contains the minimal details required. Many helper functions are moved into utils file.
    • Model's API is simplified a lot.

    • Speed issues remain to be solved.
    Source code(tar.gz)
    Source code(zip)
Owner
Kaiyu Shi
Studying Language Model
Kaiyu Shi
Face uncertainty quantification or estimation using PyTorch.

Face-uncertainty-pytorch This is a demo code of face uncertainty quantification or estimation using PyTorch. The uncertainty of face recognition is af

Kaen 3 Sep 16, 2022
A Fast Knowledge Distillation Framework for Visual Recognition

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Zhiqiang Shen 129 Dec 24, 2022
PyTorch implementation of Pay Attention to MLPs

gMLP PyTorch implementation of Pay Attention to MLPs. Quickstart Clone this repository. git clone https://github.com/jaketae/g-mlp.git Navigate to th

Jake Tae 34 Dec 13, 2022
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023
Generative Models as a Data Source for Multiview Representation Learning

GenRep Project Page | Paper Generative Models as a Data Source for Multiview Representation Learning Ali Jahanian, Xavier Puig, Yonglong Tian, Phillip

Ali 81 Dec 03, 2022
ZEBRA: Zero Evidence Biometric Recognition Assessment

ZEBRA: Zero Evidence Biometric Recognition Assessment license: LGPLv3 - please reference our paper version: 2020-06-11 author: Andreas Nautsch (EURECO

Voice Privacy Challenge 2 Dec 12, 2021
A library of extension and helper modules for Python's data analysis and machine learning libraries.

Mlxtend (machine learning extensions) is a Python library of useful tools for the day-to-day data science tasks. Sebastian Raschka 2014-2020 Links Doc

Sebastian Raschka 4.2k Jan 02, 2023
天勤量化开发包, 期货量化, 实时行情/历史数据/实盘交易

TqSdk 天勤量化交易策略程序开发包 TqSdk 是一个由信易科技发起并贡献主要代码的开源 python 库. 依托快期多年积累成熟的交易及行情服务器体系, TqSdk 支持用户使用极少的代码量构建各种类型的量化交易策略程序, 并提供包含期货、期权、股票的 历史数据-实时数据-开发调试-策略回测-

信易科技 2.8k Dec 30, 2022
codes for IKM (arXiv2021, Submitted to IEEE Trans)

Image-specific Convolutional Kernel Modulation for Single Image Super-resolution This repository is for IKM introduced in the following paper Yuanfei

Yuanfei Huang 9 Dec 29, 2022
PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and Multi-Step Knowledge Distillation

PocketNet This is the official repository of the paper: PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and M

Fadi Boutros 40 Dec 22, 2022
Code repository for the work "Multi-Domain Incremental Learning for Semantic Segmentation", accepted at WACV 2022

Multi-Domain Incremental Learning for Semantic Segmentation This is the Pytorch implementation of our work "Multi-Domain Incremental Learning for Sema

Pgxo20 24 Jan 02, 2023
Repository sharing code and the model for the paper "Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes"

Rescoring Sequence-to-Sequence Models for Text Line Recognition with CTC-Prefixes Setup virtualenv -p python3 venv source venv/bin/activate pip instal

Planet AI GmbH 9 May 20, 2022
Learning What and Where to Draw

###Learning What and Where to Draw Scott Reed, Zeynep Akata, Santosh Mohan, Samuel Tenka, Bernt Schiele, Honglak Lee This is the code for our NIPS 201

Scott Ellison Reed 337 Nov 18, 2022
Moer Grounded Image Captioning by Distilling Image-Text Matching Model

Moer Grounded Image Captioning by Distilling Image-Text Matching Model Requirements Python 3.7 Pytorch 1.2 Prepare data Please use git clone --recurse

YE Zhou 60 Dec 16, 2022
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
Fast, accurate and reliable software for algebraic CT reconstruction

KCT CBCT Fast, accurate and reliable software for algebraic CT reconstruction. This set of software tools includes OpenCL implementation of modern CT

Vojtěch Kulvait 4 Dec 14, 2022
Open-AI's DALL-E for large scale training in mesh-tensorflow.

DALL-E in Mesh-Tensorflow [WIP] Open-AI's DALL-E in Mesh-Tensorflow. If this is similarly efficient to GPT-Neo, this repo should be able to train mode

EleutherAI 432 Dec 16, 2022
Recommendation algorithms for large graphs

Fast recommendation algorithms for large graphs based on link analysis. License: Apache Software License Author: Emmanouil (Manios) Krasanakis Depende

Multimedia Knowledge and Social Analytics Lab 27 Jan 07, 2023
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

Code for sound field predictions in domains with impedance boundaries. Used for generating results from the paper

DTU Acoustic Technology Group 11 Dec 17, 2022