DeepLab resnet v2 model in pytorch

Overview

pytorch-deeplab-resnet

DeepLab resnet v2 model implementation in pytorch.

The architecture of deepLab-ResNet has been replicated exactly as it is from the caffe implementation. This architecture calculates losses on input images over multiple scales ( 1x, 0.75x, 0.5x ). Losses are calculated individually over these 3 scales. In addition to these 3 losses, one more loss is calculated after merging the output score maps on the 3 scales. These 4 losses are added to calculate the total loss.

Updates

18 July 2017

  • One more evaluation script is added, evalpyt2.py. The old evaluation script evalpyt.py uses a different methodoloy to take mean of IOUs than the one used by authors. Results section has been updated to incorporate this change.

24 June 2017

  • Now, weights over the 3 scales ( 1x, 0.75x, 0.5x ) are shared as in the caffe implementation. Previously, each of the 3 scales had seperate weights. Results are almost same after making this change (more in the results section). However, the size of the trained .pth model has reduced significantly. Memory occupied on GPU(11.9 GB) and time taken (~3.5 hours) during training are same as before. Links to corresponding .pth files have been updated.
  • Custom data can be used to train pytorch-deeplab-resnet using train.py, flag --NoLabels (total number of labels in training data) has been added to train.py and evalpyt.py for this purpose. Please note that labels should be denoted by contiguous values (starting from 0) in the ground truth images. For eg. if there are 7 (no_labels) different labels, then each ground truth image must have these labels as 0,1,2,3,...6 (no_labels-1).

The older version (prior to 24 June 2017) is available here.

Usage

Note that this repository has been tested with python 2.7 only.

Converting released caffemodel to pytorch model

To convert the caffemodel released by authors, download the deeplab-resnet caffemodel (train_iter_20000.caffemodel) pretrained on VOC into the data folder. After that, run

python convert_deeplab_resnet.py

to generate the corresponding pytorch model file (.pth). The generated .pth snapshot file can be used to get the exsct same test performace as offered by using the caffemodel in caffe (as shown by numbers in results section). If you do not want to generate the .pth file yourself, you can download it here.

To run convert_deeplab_resnet.py, deeplab v2 caffe and pytorch (python 2.7) are required.

If you want to train your model in pytorch, move to the next section.

Training

Step 1: Convert init.caffemodel to a .pth file: init.caffemodel contains MS COCO trained weights. We use these weights as initilization for all but the final layer of our model. For the last layer, we use random gaussian with a standard deviation of 0.01 as the initialization. To convert init.caffemodel to a .pth file, run (or download the converted .pth here)

python init_net_surgery.py

To run init_net_surgery .py, deeplab v2 caffe and pytorch (python 2.7) are required.

Step 2: Now that we have our initialization, we can train deeplab-resnet by running,

python train.py

To get a description of each command-line arguments, run

python train.py -h

To run train.py, pytorch (python 2.7) is required.

By default, snapshots are saved in every 1000 iterations in the data/snapshots. The following features have been implemented in this repository -

  • Training regime is the same as that of the caffe implementation - SGD with momentum is used, along with the poly lr decay policy. A weight decay has been used. The last layer has 10 times the learning rate of other layers.
  • The iter_size parameter of caffe has been implemented, effectively increasing the batch_size to batch_size times iter_size
  • Random flipping and random scaling of input has been used as data augmentation. The caffe implementation uses 4 fixed scales (0.5,0.75,1,1.25,1.5) while in the pytorch implementation, for each iteration scale is randomly picked in the range - [0.5,1.3].
  • The boundary label (255 in ground truth labels) has not been ignored in the loss function in the current version, instead it has been merged with the background. The ignore_label caffe parameter would be implemented in the future versions. Post processing using CRF has not been implemented.
  • Batchnorm parameters are kept fixed during training. Also, caffe setting use_global_stats = True is reproduced during training. Running mean and variance are not calculated during training.

When run on a Nvidia Titan X GPU, train.py occupies about 11.9 GB of memory.

Evaluation

Evaluation of the saved models can be done by running

python evalpyt.py

To get a description of each command-line arguments, run

python evalpyt.py -h

Results

When trained on VOC augmented training set (with 10582 images) using MS COCO pretrained initialization in pytorch, we get a validation performance of 72.40%(evalpyt2.py, on VOC). The corresponding .pth file can be downloaded here. This is in comparision to 75.54% that is acheived by using train_iter_20000.caffemodel released by authors, which can be replicated by running this file . The .pth model converted from .caffemodel using the first section also gives 75.54% mean IOU. A previous version of this file reported mean IOU of 78.48% on the pytorch trained model which is caclulated in a different way (evalpyt.py, Mean IOU is calculated for each image and these values are averaged together. This way of calculating mean IOU is different than the one used by authors).

To replicate this performance, run

train.py --lr 0.00025 --wtDecay 0.0005 --maxIter 20000 --GTpath <train gt images path here> --IMpath <train images path here> --LISTpath data/list/train_aug.txt

Dataset

The model presented in the results section was trained using the augmented VOC train set which was released by this paper. You may download this augmented data directly from here.

Note that this code can be used to train pytorch-deeplab-resnet model for other datasets also.

Acknowledgement

A part of the code has been borrowed from https://github.com/ry/tensorflow-resnet.

Owner
Isht Dwivedi
Isht Dwivedi
Unified API to facilitate usage of pre-trained "perceptor" models, a la CLIP

mmc installation git clone https://github.com/dmarx/Multi-Modal-Comparators cd 'Multi-Modal-Comparators' pip install poetry poetry build pip install d

David Marx 37 Nov 25, 2022
Exploring Visual Engagement Signals for Representation Learning

Exploring Visual Engagement Signals for Representation Learning Menglin Jia, Zuxuan Wu, Austin Reiter, Claire Cardie, Serge Belongie and Ser-Nam Lim C

Menglin Jia 9 Jul 23, 2022
Mixed Neural Likelihood Estimation for models of decision-making

Mixed neural likelihood estimation for models of decision-making Mixed neural likelihood estimation (MNLE) enables Bayesian parameter inference for mo

mackelab 9 Dec 22, 2022
Liecasadi - liecasadi implements Lie groups operation written in CasADi

liecasadi liecasadi implements Lie groups operation written in CasADi, mainly di

Artificial and Mechanical Intelligence 14 Nov 05, 2022
UIUCTF 2021 Public Challenge Repository

UIUCTF-2021-Public UIUCTF 2021 Public Challenge Repository Notes: every challenge folder contains a challenge.yml file in the format for ctfcli, CTFd'

SIGPwny 15 Nov 03, 2022
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
Projecting interval uncertainty through the discrete Fourier transform

Projecting interval uncertainty through the discrete Fourier transform This repo

1 Mar 02, 2022
Rafael Project- Classifying rockets to different types using data science algorithms.

Rocket-Classify Rafael Project- Classifying rockets to different types using data science algorithms. In this project we received data base with data

Hadassah Engel 5 Sep 18, 2021
Full-featured Decision Trees and Random Forests learner.

CID3 This is a full-featured Decision Trees and Random Forests learner. It can save trees or forests to disk for later use. It is possible to query tr

Alejandro Penate-Diaz 3 Aug 15, 2022
Optical Character Recognition + Instance Segmentation for russian and english languages

Распознавание рукописного текста в школьных тетрадях Соревнование, проводимое в рамках олимпиады НТО, разработанное Сбером. Платформа ODS. Результаты

Gerasimov Maxim 21 Dec 19, 2022
BMN: Boundary-Matching Network

BMN: Boundary-Matching Network A pytorch-version implementation codes of paper: "BMN: Boundary-Matching Network for Temporal Action Proposal Generatio

qinxin 260 Dec 06, 2022
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
A TensorFlow implementation of the Mnemonic Descent Method.

MDM A Tensorflow implementation of the Mnemonic Descent Method. Mnemonic Descent Method: A recurrent process applied for end-to-end face alignment G.

123 Oct 07, 2022
The Official Implementation of Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose [NIPS 2021].

Neural View Synthesis and Matching for Semi-Supervised Few-Shot Learning of 3D Pose Release Notes The offical PyTorch implementation of Neural View Sy

Angtian Wang 20 Oct 09, 2022
Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning

structshot Code and data for paper "Simple and Effective Few-Shot Named Entity Recognition with Structured Nearest Neighbor Learning", Yi Yang and Arz

ASAPP Research 47 Dec 27, 2022
Faster RCNN pytorch windows

Faster-RCNN-pytorch-windows Faster RCNN implementation with pytorch for windows Open cmd, compile this comands: cd lib python setup.py build develop T

Hwa-Rang Kim 1 Nov 11, 2022
Robust Self-augmentation for NER with Meta-reweighting

Robust Self-augmentation for NER with Meta-reweighting

Lam chi 17 Nov 22, 2022
A PyTorch re-implementation of the paper 'Exploring Simple Siamese Representation Learning'. Reproduced the 67.8% Top1 Acc on ImageNet.

Exploring simple siamese representation learning This is a PyTorch re-implementation of the SimSiam paper on ImageNet dataset. The results match that

Taojiannan Yang 72 Nov 09, 2022