Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Overview

Vision Longformer

This project provides the source code for the vision longformer paper.

Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding

Highlights

  • Fast Pytorch implementation of conv-like sliding-window local attention
  • Fast random-shifting training strategy of vision longformer
  • A versatile multi-scale vision transformer class (MsViT) that can support various efficient attention mechanisms
  • Compare multiple efficient attention mechanisms: vision-longformer ("global + conv_like local") attention, performer attention, global-memory attention, linformer attention and spatial reduction attention.
  • Provides pre-trained models for different attention mechanisms.

Updates

  • 03/29/2021: First version of vision longformer paper posted on Arxiv.
  • 04/30/2021: Performance improved by adding relative positional bias, inspired by Swin Transformer! Training is accelerated significantly by adding random-shifting training strategy. First version of code released.

Multi-scale Vision Transformer Architecture

Vision Longformer, and more generally the Multi-scale Vision Transformer (MsViT), follows the multi-stage design of ResNet. Each stage is a (slightly modified) vision transformer with some user-specified attenion mechanism. Currently, five attention mechanisms are supported:

# choices=['full', 'longformerhand', 'linformer', 'srformer', 'performer', 'longformerauto', 'longformer_cuda']
_C.MODEL.VIT.MSVIT.ATTN_TYPE = 'longformerhand'

As an example, a 3-stage multi-scale model architecture is specified by the MODEL.VIT.MSVIT.ARCH:

_C.MODEL.VIT.MSVIT.ARCH = 'l1,h3,d192,n1,s1,g1,p16,f7,a1_l2,h6,d384,n10,s0,g1,p2,f7,a1_l3,h12,d796,n1,s0,g1,p2,f7,a1'

Configs of different stages are separated by _. For each stage, the meaning of the config l*,h*,d*,n*,s*,g*,p*,f*,a* is specified as below.

symbol l h d n s g p f a
Name stage num_heads hidden_dim num_layers is_parse_attention num_global_tokens patch_size num_feats absolute_position_embedding
Range [1,2,3,4] N+ N+ N+ [0, 1] N N N [0,1]

Here, N stands for natural numbers including 0, and N+ stands for positive integers.

The num_feats (number of features) field, i.e., f, is overloaded for different attention mechanisms:

linformer: number of features

performer: number of (random orthogonal) features

srformer: spatial reduction ratio

longformer: one sided window size (not including itself, actual window size is 2 * f + 1 for MSVIT.SW_EXACT = 1 and 3 * f for MSVIT.SW_EXACT = 0/-1).

The following are the main model architectures used in Vision Longformer paper.

Model size stage_1 stage_2 stage_3 stage_4
Tiny n1,p4,h1,d48 n1,p2,h3,d96 n9,p2,h3,d192 n1,p2,h6,d384
Small n1,p4,h3,d96 n2,p2,h3,d192 n8,p2,h6,d384 n1,p2,h12,d768
Medium-Deep n1,p4,h3,d96 n4,p2,h3,d192 n16,p2,h6,d384 n1,p2,h12,d768
Medium-Wide n1,p4,h3,d192 n2,p2,h6,d384 n8,p2,h8,d512 n1,p2,h12,d768
Base-Deep n1,p4,h3,d96 n8,p2,h3,d192 n24,p2,h6,d384 n1,p2,h12,d768
Base-Wide n1,p4,h3,d192 n2,p2,h6,d384 n8,p2,h12,d768 n1,p2,h16,d1024

Model Performance

Main Results on ImageNet and Pretrained Models

Vision Longformer with absolute positional embedding

name pretrain resolution [email protected] [email protected] #params FLOPs 22K model 1K model
ViL-Tiny ImageNet-1K 224x224 76.3 93.3 6.7M 1.43G - ckpt, config
ViL-Small ImageNet-1K 224x224 82.0 95.8 24.6M 5.12G - ckpt, config
ViL-Medium-Deep ImageNet-1K 224x224 83.3 96.3 39.7M 9.1G - ckpt, config
ViL-Medium-Wide ImageNet-1K 224x224 82.9 96.4 39.8M 11.3G - ckpt, config
ViL-Medium-Deep ImageNet-22K 384x384 85.6 97.7 39.7M 29.4G ckpt, config ckpt, config
ViL-Medium-Wide ImageNet-22K 384x384 84.7 97.3 39.8M 35.1G ckpt, config ckpt, config
ViL-Base-Deep ImageNet-22K 384x384 86.0 97.9 55.7M 45.3G ckpt, config ckpt, config
ViL-Base-Wide ImageNet-22K 384x384 86.2 98.0 79.0M 55.8G ckpt, config ckpt, config

Vision Longformer with relative positional embedding and comparison with Swin Transformers

name pretrain resolution [email protected] [email protected] #params FLOPs 22K model 1K model
ViL-Tiny ImageNet-1K 224x224 76.65 93.55 6.7M 1.43G - ckpt config
ViL-Small ImageNet-1K 224x224 82.39 95.92 24.6M 5.12G - ckpt config
ViL-Medium-Deep ImageNet-1K 224x224 83.52 96.52 39.7M 9.1G - ckpt config
ViL-Medium-Deep ImageNet-22K 384x384 85.73 97.8 39.7M 29.4G ckpt config ckpt config
ViL-Base-Deep ImageNet-22K 384x384 86.11 97.89 55.7M 45.3G ckpt config ckpt config
--- --- --- --- --- --- --- --- ---
Swin-Tiny (2-2-6-2) ImageNet-1K 224x224 81.2 95.5 28M 4.5G - from swin repo
ViL-Swin-Tiny (2-2-6-2) ImageNet-1K 224x224 82.71 95.95 28M 5.33G - ckpt config
Swin-Small (2-2-18-2) ImageNet-1K 224x224 83.2 96.2 50M 8.7G - from swin repo
ViL-Swin-Small (2-2-18-2) ImageNet-1K 224x224 83.7 96.43 50M 9.85G - ckpt config

Results of other attention mechanims (Small size)

Attention pretrain resolution [email protected] [email protected] #params FLOPs 22K model 1K model
full ImageNet-1K 224x224 81.9 95.8 24.6M 6.95G - ckpt, config
longformer ImageNet-1K 224x224 82.0 95.8 24.6M 5.12G - ckpt, config
--- --- --- --- --- --- --- --- ---
linformer ImageNet-1K 224x224 81.0 95.4 26.3M 5.62G - ckpt, config
srformer/64 ImageNet-1K 224x224 76.4 92.9 52.9M 3.97G - ckpt, config
srformer/32 ImageNet-1K 224x224 79.9 94.9 31.1M 4.28G - ckpt, config
global ImageNet-1K 224x224 79.0 94.5 24.9M 6.78G - ckpt, config
performer ImageNet-1K 224x224 78.7 94.3 24.8M 6.26G - ckpt, config
--- --- --- --- --- --- --- --- ---
partial linformer ImageNet-1K 224x224 81.8 95.9 25.8M 5.21G - ckpt, config
partial srformer/32 ImageNet-1K 224x224 81.6 95.7 26.4M 4.57G - ckpt, config
partial global ImageNet-1K 224x224 81.4 95.7 24.9M 6.3G - ckpt, config
partial performer ImageNet-1K 224x224 81.7 95.7 24.7M 5.52G - ckpt, config

See more results on comparing different efficient attention mechanisms in Table 13 and Table 14 in the Vision Longformer paper.

Main Results on COCO object detection and instance segmentation (with absolute positional embedding)

Vision Longformer with absolute positional embedding

Backbone Method pretrain Lr Schd box mAP mask mAP #params FLOPs
ViL-Tiny RetinaNet ImageNet-1K 1x 38.8 -- 16.64M 182.7G
ViL-Tiny RetinaNet ImageNet-1K 3x 40.7 -- 16.64M 182.7G
ViL-Small RetinaNet ImageNet-1K 1x 41.6 -- 35.68M 254.8G
ViL-Small RetinaNet ImageNet-1K 3x 42.9 -- 35.68M 254.8G
ViL-Medium (D) RetinaNet ImageNet-1K 1x 42.9 -- 50.77M 330.4G
ViL-Medium (D) RetinaNet ImageNet-1K 3x 43.7 -- 50.77M 330.4G
ViL-Base (D) RetinaNet ImageNet-1K 1x 44.3 -- 66.74M 420.9G
ViL-Base (D) RetinaNet ImageNet-1K 3x 44.7 -- 66.74M 420.9G
--- --- --- --- --- --- --- ---
ViL-Tiny Mask R-CNN ImageNet-1K 1x 38.7 36.2 26.9M 145.6G
ViL-Tiny Mask R-CNN ImageNet-1K 3x 41.2 37.9 26.9M 145.6G
ViL-Small Mask R-CNN ImageNet-1K 1x 41.8 38.5 45.0M 218.3G
ViL-Small Mask R-CNN ImageNet-1K 3x 43.4 39.6 45.0M 218.3G
ViL-Medium (D) Mask R-CNN ImageNet-1K 1x 43.4 39.7 60.1M 293.8G
ViL-Medium (D) Mask R-CNN ImageNet-1K 3x 44.6 40.7 60.1M 293.8G
ViL-Base (D) Mask R-CNN ImageNet-1K 1x 45.1 41.0 76.1M 384.4G
ViL-Base (D) Mask R-CNN ImageNet-1K 3x 45.7 41.3 76.1M 384.4G

See more fine-grained results in Table 6 and Table 7 in the Vision Longformer paper.

Results of other attention mechanims (Small size)

Backbone Method pretrain Lr Schd box mAP mask mAP #params FLOPs Memory
srformer/64 Mask R-CNN ImageNet-1K 1x 35.7 33.6 73.3M 224.1G 7.1G
srformer/32 Mask R-CNN ImageNet-1K 1x 39.8 36.8 51.5M 268.3G 13.6G
Partial srformer/32 Mask R-CNN ImageNet-1K 1x 41.1 38.1 46.8M 352.1G 22.6G
global Mask R-CNN ImageNet-1K 1x 34.1 32.5 45.2M 226.4G 7.6G
Partial global Mask R-CNN ImageNet-1K 1x 41.3 38.2 45.1M 326.5G 20.1G
performer Mask R-CNN ImageNet-1K 1x 35.0 33.1 45.0M 251.5G 8.4G
Partial performer Mask R-CNN ImageNet-1K 1x 41.7 38.4 45.0M 343.7G 20.0G
ViL Mask R-CNN ImageNet-1K 1x 41.3. 38.1 45.0M 218.3G 7.4G
Partial ViL Mask R-CNN ImageNet-1K 1x 42.6 39.3 45.0M 326.8G 19.5G

Compare different implementations of vision longformer

Please go to Implementation for implementation details of vision longformer.

Training/Testing Vision Longformer on Local Machine

Prepare datasets

One needs to download zip files of ImageNet (train.zip, train_map.txt, val.zip, val_map.txt) under the specified data folder, e.g., the default src/datasets/imagenet. The CIFAR10, CIFAR100 and MNIST can be automatically downloaded.

With the default setting, we should have the following files in the /root/datasets directory:

root (root folder)
├── datasets (folder with all the datasets and pretrained models)
├──── imagenet/ (imagenet dataset and pretrained models)
├────── 2012/
├───────── train.zip
├───────── val.zip
├───────── train_map.txt
├───────── val_map.txt
├──── CIFAR10/ (CIFAR10 dataset and pretrained models)
├──── CIFAR100/ (CIFAR100 dataset and pretrained models)
├──── MNIST/ (MNIST dataset and pretrained models)

Environment requirements

It is recommended to use any of the following docker images to run the experiments.

pengchuanzhang/maskrcnn:ubuntu18-py3.7-cuda10.1-pytorch1.7 # recommended
pengchuanzhang/maskrcnn:py3.7-cuda10.0-pytorch1.7 # if you want to try the customized cuda kernel of vision longformer.

For virtual environments, the following packages should be the sufficient.

pytorch >= 1.5
tensorboardx, einops, timm, yacs==0.1.8

Evaluation scripts

Navigate to the src folder, run the following commands to evaluate the pre-trained models above.

Pretrained models of Vision Longformer

# tiny
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ARCH 'l1,h1,d48,n1,s1,g1,p4,f7_l2,h3,d96,n1,s1,g1,p2,f7_l3,h3,d192,n9,s0,g1,p2,f7_l4,h6,d384,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/visionlongformer/msvit_tiny_longformersw_1191_train/model_best.pth 
INFO:root:ACCURACY: 76.29600524902344%
INFO:root:iter: 0  max mem: 2236
    accuracy_metrics - top1: 76.2960 (76.2960)  top5: 93.2720 (93.2720)
    epoch_metrics    - total_cnt: 50000.0000 (50000.0000)  loss: 0.0040 (0.0040)  time: 0.0022 (0.0022)

# small
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f7_l2,h3,d192,n2,s1,g1,p2,f7_l3,h6,d384,n8,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/visionlongformer/msvit_small_longformersw_1281_train/model_best.pth 
INFO:root:ACCURACY: 81.97799682617188%
INFO:root:iter: 0  max mem: 6060
    accuracy_metrics - top1: 81.9780 (81.9780)  top5: 95.7880 (95.7880)
    epoch_metrics    - total_cnt: 50000.0000 (50000.0000)  loss: 0.0031 (0.0031)  time: 0.0029 (0.0029)

# medium-deep
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f7_l2,h3,d192,n4,s1,g1,p2,f7_l3,h6,d384,n16,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/visionlongformer/deepmedium_14161_lr8e-4/model_best.pth

# medium-wide
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ARCH 'l1,h3,d192,n1,s1,g1,p4,f7_l2,h6,d384,n2,s1,g1,p2,f7_l3,h8,d512,n8,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/visionlongformer/wide_medium_1281/model_best.pth

# ImageNet22K pretrained and ImageNet1K finetuned medium-deep
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest FINETUNE.FINETUNE True INPUT.IMAGE_SIZE 384 INPUT.CROP_PCT 0.922 MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f7_l2,h3,d192,n4,s1,g1,p2,f7_l3,h6,d384,n16,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/IN384_IN22kpretrained/msvitdeepmedium_imagenet384_finetune_bsz256_lr001_wd0/model_best.pth

# ImageNet22K pretrained and ImageNet1K finetuned medium-wide
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest FINETUNE.FINETUNE True INPUT.IMAGE_SIZE 384 INPUT.CROP_PCT 0.922 MODEL.VIT.MSVIT.ARCH 'l1,h3,d192,n1,s1,g1,p4,f8_l2,h6,d384,n2,s1,g1,p2,f12_l3,h8,d512,n8,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/IN384_IN22kpretrained/msvitwidemedium_imagenet384_finetune_bsz512_lr004_wd0/model_best.pth

# ImageNet22K pretrained and ImageNet1K finetuned base-deep
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest FINETUNE.FINETUNE True INPUT.IMAGE_SIZE 384 INPUT.CROP_PCT 0.922 MODEL.VIT.MSVIT.LN_EPS 1e-5 MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f6_l2,h3,d192,n8,s1,g1,p2,f8_l3,h6,d384,n24,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/IN384_IN22kpretrained/msvitdeepbase_imagenet384_finetune_bsz640_lr003_wd0/model_best.pth

# ImageNet22K pretrained and ImageNet1K finetuned base-wide
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest FINETUNE.FINETUNE True INPUT.IMAGE_SIZE 384 INPUT.CROP_PCT 0.922 MODEL.VIT.MSVIT.ARCH 'l1,h3,d192,n1,s1,g1,p4,f8_l2,h6,d384,n2,s1,g1,p2,f8_l3,h12,d768,n8,s0,g1,p2,f7_l4,h16,d1024,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/IN384_IN22kpretrained/msvitwidebase_imagenet384_finetune_bsz768_lr001_wd1e-7/model_best.pth DATALOADER.BSZ 64

Pretrained models of other attention mechanisms

# Small full attention
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE full MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f7_l2,h3,d192,n2,s1,g1,p2,f7_l3,h6,d384,n8,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/fullMSA/small1281/model_best.pth

# Small linformer
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE linformer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f256_l2,h3,d192,n2,s1,g1,p2,f256_l3,h6,d384,n8,s1,g1,p2,f256_l4,h12,d768,n1,s1,g0,p2,f256' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/linformer/small1281_full/model_best.pth

# Small partial linformer
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE linformer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f256_l2,h3,d192,n2,s1,g1,p2,f256_l3,h6,d384,n8,s0,g1,p2,f256_l4,h12,d768,n1,s0,g0,p2,f256' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/linformer/small1281_partial/model_best.pth

# Small global attention
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.AVG_POOL True MODEL.VIT.MSVIT.ONLY_GLOBAL True MODEL.VIT.MSVIT.ATTN_TYPE longformerhand MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g256,p4,f7_l2,h3,d192,n2,s1,g256,p2,f7_l3,h6,d384,n8,s1,g64,p2,f7_l4,h12,d768,n1,s1,g16,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/globalformer/globalfull1281/model_best.pth

# Small partial global attention
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.AVG_POOL True MODEL.VIT.MSVIT.ONLY_GLOBAL True MODEL.VIT.MSVIT.ATTN_TYPE longformerhand MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g256,p4,f7_l2,h3,d192,n2,s1,g256,p2,f7_l3,h6,d384,n8,s0,g1,p2,f7_l4,h6,d384,n1,s0,g0,p2,f7' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/globalformer/globalpartial1281/model_best.pth

# Small spatial reduction attention with down-sample ratio 64
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE srformer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f16_l2,h3,d192,n2,s1,g1,p2,f8_l3,h6,d384,n8,s1,g1,p2,f4_l4,h12,d768,n1,s1,g0,p2,f2' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/srformer/srformerfull1281/model_best.pth

# Small spatial reduction attention with down-sample ratio 32
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE srformer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f8_l2,h3,d192,n2,s1,g1,p2,f4_l3,h6,d384,n8,s1,g1,p2,f2_l4,h12,d768,n1,s0,g0,p2,f1' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/srformer/srformerfull8_1281/model_best.pth

# Small partial spatial reduction attention with down-sample ratio 32
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE srformer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f8_l2,h3,d192,n2,s1,g1,p2,f4_l3,h6,d384,n8,s0,g1,p2,f2_l4,h12,d768,n1,s0,g0,p2,f1' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/srformer/srformerpartial1281/model_best.pth

# Small performer
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE performer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f256_l2,h3,d192,n2,s1,g1,p2,f256_l3,h6,d384,n8,s1,g1,p2,f256_l4,h12,d768,n1,s1,g0,p2,f256' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/performer/fullperformer1281/model_best.pth

# Small partial performer
python run_experiment.py --config-file 'config/msvit.yaml' --data ../datasets/imagenet/2012 --output_dir ../run/imagenet/msvittest MODEL.VIT.MSVIT.ATTN_TYPE performer MODEL.VIT.MSVIT.ARCH 'l1,h3,d96,n1,s1,g1,p4,f256_l2,h3,d192,n2,s1,g1,p2,f256_l3,h6,d384,n8,s0,g1,p2,f256_l4,h12,d768,n1,s0,g0,p2,f256' EVALUATE True MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/performer/partialperformer1281/model_best.pth

Training scripts

We provide three example training scripts as below.

# ViL-Tiny with relative positional embedding: Imagenet1K training with 224x224 resolution
python -m torch.distributed.launch --nproc_per_node=4 run_experiment.py --config-file
    'config/msvit.yaml' --data '../datasets/imagenet/2012/' OPTIM.OPT adamw
    OPTIM.LR 1e-3 OPTIM.WD 0.1 DATALOADER.BSZ 1024 MODEL.VIT.MSVIT.ATTN_TYPE
    longformerhand OPTIM.EPOCHS 300 SOLVER.LR_POLICY cosine INPUT.IMAGE_SIZE 224 MODEL.VIT.MSVIT.ARCH
    "l1,h1,d48,n1,s1,g1,p4,f7,a0_l2,h3,d96,n2,s1,g1,p2,f7,a0_l3,h3,d192,n8,s0,g1,p2,f7,a0_l4,h6,d384,n1,s0,g0,p2,f7,a0"
    AUG.REPEATED_AUG False

# Training with random shifting strategy: accelerate the training significantly
python -m torch.distributed.launch --nproc_per_node=4 run_experiment.py --config-file
    'config/msvit.yaml' --data '../datasets/imagenet/2012/' OPTIM.OPT adamw
    OPTIM.LR 1e-3 OPTIM.WD 0.1 DATALOADER.BSZ 1024 MODEL.VIT.MSVIT.ATTN_TYPE
    longformerhand OPTIM.EPOCHS 300 SOLVER.LR_POLICY cosine INPUT.IMAGE_SIZE 224 MODEL.VIT.MSVIT.ARCH
    "l1,h1,d48,n1,s1,g1,p4,f7,a0_l2,h3,d96,n2,s1,g1,p2,f7,a0_l3,h3,d192,n8,s0,g1,p2,f7,a0_l4,h6,d384,n1,s0,g0,p2,f7,a0"
    AUG.REPEATED_AUG False MODEL.VIT.MSVIT.MODE 1 MODEL.VIT.MSVIT.VIL_MODE_SWITCH 0.875

# ViL-Medium-Deep: Imagenet1K finetuning with 384x384 resolution
python -m torch.distributed.launch --nproc_per_node=8 run_experiment.py --config-file
    'config/msvit_384finetune.yaml' --data '/mnt/default/data/sasa/imagenet/2012/'
    OPTIM.OPT qhm OPTIM.LR 0.01 OPTIM.WD 0.0 DATALOADER.BSZ 256 MODEL.VIT.MSVIT.ATTN_TYPE
    longformerhand OPTIM.EPOCHS 10 SOLVER.LR_POLICY cosine INPUT.IMAGE_SIZE 384 MODEL.VIT.MSVIT.ARCH
    "l1,h3,d96,n1,s1,g1,p4,f8_l2,h3,d192,n4,s1,g1,p2,f12_l3,h6,d384,n16,s0,g1,p2,f7_l4,h12,d768,n1,s0,g0,p2,f7"
    MODEL.MODEL_PATH /home/penzhan/penzhanwu2/imagenet/msvit/IN22kpretrained/deepmedium/model_best.pth

Cite Vision Longformer

Please consider citing vision longformer if it helps your work.

@article{zhang2021multi,
  title={Multi-Scale Vision Longformer: A New Vision Transformer for High-Resolution Image Encoding},
  author={Zhang, Pengchuan and Dai, Xiyang and Yang, Jianwei and Xiao, Bin and Yuan, Lu and Zhang, Lei and Gao, Jianfeng},
  journal={arXiv preprint arXiv:2103.15358},
  year={2021}
}
Owner
Microsoft
Open source projects and samples from Microsoft
Microsoft
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL)

Locally Differentially Private Distributed Deep Learning via Knowledge Distillation (LDP-DL) A preprint version of our paper: Link here This is a samp

Di Zhuang 3 Jan 08, 2023
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
NasirKhusraw - The TSP solved using genetic algorithm and show TSP path overlaid on a map of the Iran provinces & their capitals.

Nasir Khusraw : Travelling Salesman Problem The TSP solved using genetic algorithm. This project show TSP path overlaid on a map of the Iran provinces

J Brave 2 Sep 01, 2022
Collection of in-progress libraries for entity neural networks.

ENN Incubator Collection of in-progress libraries for entity neural networks: Neural Network Architectures for Structured State Entity Gym: Abstractio

25 Dec 01, 2022
《Fst Lerning of Temporl Action Proposl vi Dense Boundry Genertor》(AAAI 2020)

Update 2020.03.13: Release tensorflow-version and pytorch-version DBG complete code. 2019.11.12: Release tensorflow-version DBG inference code. 2019.1

Tencent 338 Dec 16, 2022
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
Tensorflow-seq2seq-tutorials - Dynamic seq2seq in TensorFlow, step by step

seq2seq with TensorFlow Collection of unfinished tutorials. May be good for educational purposes. 1 - simple sequence-to-sequence model with dynamic u

Matvey Ezhov 1k Dec 17, 2022
Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Pytorch implementation of the paper "Enhancing Content Preservation in Text Style Transfer Using Reverse Attention and Conditional Layer Normalization"

Dongkyu Lee 4 Sep 18, 2022
Bringing Characters to Life with Computer Brains in Unity

AI4Animation: Deep Learning for Character Control This project explores the opportunities of deep learning for character animation and control as part

Sebastian Starke 5.5k Jan 04, 2023
FinRL­-Meta: A Universe for Data­-Driven Financial Reinforcement Learning. 🔥

FinRL-Meta: A Universe of Market Environments. FinRL-Meta is a universe of market environments for data-driven financial reinforcement learning. Users

AI4Finance Foundation 543 Jan 08, 2023
Build upon neural radiance fields to create a scene-specific implicit 3D semantic representation, Semantic-NeRF

Semantic-NeRF: Semantic Neural Radiance Fields Project Page | Video | Paper | Data In-Place Scene Labelling and Understanding with Implicit Scene Repr

Shuaifeng Zhi 243 Jan 07, 2023
Python Classes: Medical Insurance Project using Object Oriented Programming Concepts

Medical-Insurance-Project-OOP Python Classes: Medical Insurance Project using Object Oriented Programming Concepts Classes are an incredibly useful pr

Hugo B. 0 Feb 04, 2022
Object Database for Super Mario Galaxy 1/2.

Super Mario Galaxy Object Database Welcome to the public object database for Super Mario Galaxy and Super Mario Galaxy 2. Here, we document all object

Aurum 9 Dec 04, 2022
Codes for Causal Semantic Generative model (CSG), the model proposed in "Learning Causal Semantic Representation for Out-of-Distribution Prediction" (NeurIPS-21)

Learning Causal Semantic Representation for Out-of-Distribution Prediction This repository is the official implementation of "Learning Causal Semantic

Chang Liu 54 Dec 01, 2022
Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph".

multilingual-mrc-isdg Code for the AAAI 2022 paper "Zero-Shot Cross-Lingual Machine Reading Comprehension via Inter-Sentence Dependency Graph". This r

Liyan 5 Dec 07, 2022
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION.

LiMuSE Overview Pytorch implementation of our paper LIMUSE: LIGHTWEIGHT MULTI-MODAL SPEAKER EXTRACTION. LiMuSE explores group communication on a multi

Auditory Model and Cognitive Computing Lab 17 Oct 26, 2022
My solution for the 7th place / 245 in the Umoja Hack 2022 challenge

Umoja Hack 2022 : Insurance Claim Challenge My solution for the 7th place / 245 in the Umoja Hack 2022 challenge Umoja Hack Africa is a yearly hackath

Souames Annis 17 Jun 03, 2022