PyTorch implementation for Partially View-aligned Representation Learning with Noise-robust Contrastive Loss (CVPR 2021)

Overview

2021-CVPR-MvCLN

This repo contains the code and data of the following paper accepted by CVPR 2021

Partially View-aligned Representation Learning with Noise-robust Contrastive Loss

Requirements

pytorch==1.5.0

numpy>=1.18.2

scikit-learn>=0.22.2

munkres>=1.1.2

logging>=0.5.1.2

Configuration

The hyper-parameters, the training options (including the ratiao of positive to negative, aligned proportions and switch time) are defined in the args. part in run.py.

Datasets

The Scene-15 and Reuters-dim10 datasets are placed in "datasets" folder. The NoisyMNIST and Caltech101 datasets could be downloaded from Google cloud or Baidu cloud with password "rqv4".

Usage

After setting the configuration and downloading datasets from the cloud desk, one could run the following code to verify our method on NoisyMNIST-30000 dataset for clustering task.

python run.py --data 3

The expected outputs are as follows:

******** Training begin, use RobustLoss: 1.0*m, use gpu 0, batch_size = 1024, unaligned_prop = 0.5, NetSeed = 64, DivSeed = 249 ********
=======> Train epoch: 0/80
margin = 5
distance: pos. = 2.5, neg. = 2.5, true neg. = 2.5, false neg. = 2.49
loss = 3.41, epoch_time = 12.07 s
******** testing ********
CAR=0.1012, kmeans: acc=0.1791, nmi=0.0435, ari=0.021
******* neg_dist_mean >= 1.0 * margin, start using fine loss at epoch: 3 *******
=======> Train epoch: 10/80
distance: pos. = 0.76, neg. = 5.38, true neg. = 5.83, false neg. = 1.34
loss = 0.09, epoch_time = 15.17 s
******** testing ********
CAR=0.8712, kmeans: acc=0.9462, nmi=0.8705, ari=0.8862
......
=======> Train epoch: 80/80
distance: pos. = 0.25, neg. = 5.34, true neg. = 5.8, false neg. = 1.17
loss = 0.03, epoch_time = 14.18 s
******** testing ********
CAR=0.8753, kmeans: acc=0.9459, nmi=0.8744, ari=0.8859
******** End, training time = 1276.29 s ********

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{yang2021MvCLN,
   title={Partially View-aligned Representation Learning with Noise-robust Contrastive Loss},
   author={Mouxing Yang, Yunfan Li, Zhenyu Huang, Zitao Liu, Peng Hu, Xi Peng},
   booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
   month={June},
   year={2021}
}
Owner
XLearning Group
Xi Peng's XLearning Group
XLearning Group
Code of paper "CDFI: Compression-Driven Network Design for Frame Interpolation", CVPR 2021

CDFI (Compression-Driven-Frame-Interpolation) [Paper] (Coming soon...) | [arXiv] Tianyu Ding*, Luming Liang*, Zhihui Zhu, Ilya Zharkov IEEE Conference

Tianyu Ding 95 Dec 04, 2022
Author's PyTorch implementation of TD3+BC, a simple variant of TD3 for offline RL

A Minimalist Approach to Offline Reinforcement Learning TD3+BC is a simple approach to offline RL where only two changes are made to TD3: (1) a weight

Scott Fujimoto 193 Dec 23, 2022
PyTorch code for the paper "FIERY: Future Instance Segmentation in Bird's-Eye view from Surround Monocular Cameras"

FIERY This is the PyTorch implementation for inference and training of the future prediction bird's-eye view network as described in: FIERY: Future In

Wayve 406 Dec 24, 2022
Yet another video caption

Yet another video caption

Fan Zhimin 5 May 26, 2022
Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition"

CLIPstyler Official Pytorch implementation of "CLIPstyler:Image Style Transfer with a Single Text Condition" Environment Pytorch 1.7.1, Python 3.6 $ c

203 Dec 30, 2022
Multi-Glimpse Network With Python

Multi-Glimpse Network Our code requires Python ≥ 3.8 Installation For example, venv + pip: $ python3 -m venv env $ source env/bin/activate (env) $ pyt

9 May 10, 2022
Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface.

Gym-TORCS Gym-TORCS is the reinforcement learning (RL) environment in TORCS domain with OpenAI-gym-like interface. TORCS is the open-rource realistic

naoto yoshida 400 Dec 27, 2022
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
Using LSTM write Tang poetry

本教程将通过一个示例对LSTM进行介绍。通过搭建训练LSTM网络,我们将训练一个模型来生成唐诗。本文将对该实现进行详尽的解释,并阐明此模型的工作方式和原因。并不需要过多专业知识,但是可能需要新手花一些时间来理解的模型训练的实际情况。为了节省时间,请尽量选择GPU进行训练。

56 Dec 15, 2022
Dieser Scanner findet Websites, die nicht direkt in Suchmaschinen auftauchen, aber trotzdem erreichbar sind.

Deep Web Scanner Dieses Script findet Websites, die per IPv4-Adresse erreichbar sind und speichert deren Metadaten. Die Ausgabe im Terminal wird nach

Alex K. 30 Nov 18, 2022
A disassembler for the RP2040 Programmable I/O State-machine!

piodisasm A disassembler for the RP2040 Programmable I/O State-machine! Usage Just run piodisasm.py on a file that contains the PIO code as hex! (Such

Ghidra Ninja 29 Dec 06, 2022
code for Multi-scale Matching Networks for Semantic Correspondence, ICCV

MMNet This repo is the official implementation of ICCV 2021 paper "Multi-scale Matching Networks for Semantic Correspondence.". Pre-requisite conda cr

joey zhao 25 Dec 12, 2022
PyTorch implementation for Convolutional Networks with Adaptive Inference Graphs

Convolutional Networks with Adaptive Inference Graphs (ConvNet-AIG) This repository contains a PyTorch implementation of the paper Convolutional Netwo

Andreas Veit 176 Dec 07, 2022
Morphable Detector for Object Detection on Demand

Morphable Detector for Object Detection on Demand (ICCV 2021) PyTorch implementation of the paper Morphable Detector for Object Detection on Demand. I

9 Feb 23, 2022
LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021

LoFTR-with-train-script LoFTR:Detector-Free Local Feature Matching with Transformers CVPR 2021 (with train script --- unofficial ---). About Megadepth

Nan Xiaohu 15 Nov 04, 2022
Network Enhancement implementation in pytorch

network_enahncement_pytorch Network Enhancement implementation in pytorch Research paper Network Enhancement: a general method to denoise weighted bio

Yen 1 Nov 12, 2021
MarcoPolo is a clustering-free approach to the exploration of bimodally expressed genes along with group information in single-cell RNA-seq data

MarcoPolo is a method to discover differentially expressed genes in single-cell RNA-seq data without depending on prior clustering Overview MarcoPolo

Chanwoo Kim 13 Dec 18, 2022
Calculates carbon footprint based on fuel mix and discharge profile at the utility selected. Can create graphs and tabular output for fuel mix based on input file of series of power drawn over a period of time.

carbon-footprint-calculator Conda distribution ~/anaconda3/bin/conda install anaconda-client conda-build ~/anaconda3/bin/conda config --set anaconda_u

Seattle university Renewable energy research 7 Sep 26, 2022