当前位置:网站首页>Basic Terms of Machine Learning
Basic Terms of Machine Learning
2022-08-09 17:17:00 【YuNlear】
1. Data: records about the subjects of the study
2. Data set: a collection of records
3. Instance/sample: a description of each event or object
4. Attribute/feature: A matter that reflects the performance or nature of an event or object in some way.
5. Attribute value: the value of the attribute
6. Attribute space/sample space: the space formed by attributes
7. Dimensionality of the sample (dimensionality): The number of attribute descriptions of the sample.
8. Learning/training: Learning a model from data.
9. Training data/training sample/training set: The set of data, samples and samples used in training.
10. Hypothesis: The underlying pattern of the learned model corresponding to the obtained data.
11. Ground-truth: The underlying law itself.
12. Label: Information about the example results.
13. Example: Include an example of markup.
14. Label space/output space (label space): The collection of all labels.
15. Classification: Predicting discrete values.
16. Regression: Predicting continuous values.
17. Testing: After learning the model, use the model to make predictions.
18. Testing sample: The sample being tested.
19. Clustering: Divide the data in the training set into multiple groups.
20. Cluster: A group divided by cluster analysis.
21. Supervised learning: The training data has labeled information.
22. Unsupervised learning: The training data has no labeled information.
23. Generalization: the ability of the learned model to apply to new samples
24. Distribution: The distribution of samples in the sample space
边栏推荐
猜你喜欢

将类指针强制转换为void*指针进行传参的使用方法

Postgraduate Work Weekly (Week 6)

【工具使用】Keil5软件使用-进阶工程配置篇

【深度学习】目标检测之评价指标

"Deep learning" evaluation index of target detection

ResNet 残差网络 一些粗略的理解

【深度学习】介绍六大类损失函数(九)

【工具使用】Modbus Poll软件使用详解
![[Deep Learning] SVM solves the linear inseparable situation (8)](/img/3c/199f3ff3fb0546bcd7f70bd71030a0.png)
[Deep Learning] SVM solves the linear inseparable situation (8)

堆(heap)系列_0x07:NT堆调试支持_滞后发现调试支持
随机推荐
【研究生工作周报】(第十周)
【研究生工作周报】(第七周)
灰色关联度矩阵——MATLAB在数学建模中的应用
SVM支持向量机——MATLAB在数学建模中的应用
【深度学习】归一化(十一)
Vim实用技巧_7.模式匹配和查找
Photoshop CS6的使用心得
【 Leetcode 】 433. The smallest genetic changes
灰色预测及其MATLAB实现——MATLAB在数学建模中的应用
【深度学习】梯度下降与梯度爆炸(十)
【深度学习】模型选择、欠/过拟合和感受野(三)
堆(heap)系列_0x07:NT堆调试支持_滞后发现调试支持
【深度学习】全面理解支持向量机SVM(七)
Candide3 face animation model
【力扣】128. 最长连续序列
【力扣】1995. 统计特殊四元组
【Leetcode】433. 最小基因变化
【深度学习】梳理凸优化问题(五)
【力扣】55. 跳跃游戏
【Postgraduate Work Weekly】(Week 12)