当前位置:网站首页>AtCoder Beginner Contest 248C Dice Sum (生成函数)
AtCoder Beginner Contest 248C Dice Sum (生成函数)
2022-04-23 13:51:00 【MoYan1082】
AtCoder Beginner Contest 248C Dice Sum
题意
给定三个整数 N , M , K N,M,K N,M,K,求有多少种满足以下条件的序列 A A A:
- A A A长度为 N N N;
- 1 ≤ A i ≤ M ( 1 ≤ i ≤ N ) 1\le A_i\le M(1\le i\le N) 1≤Ai≤M(1≤i≤N)
- ∑ i = 1 N A i ≤ K \sum_{i=1}^N A_i\le K ∑i=1NAi≤K
最后的结果对998244353取模。
思路
对于每一个 A i A_i Ai,可以用 f ( x ) = 0 + x + x 2 + . . . + x M = x 1 − x M 1 − x f(x)=0+x+x^2+...+x^M=x\frac{1-x^M}{1-x} f(x)=0+x+x2+...+xM=x1−x1−xM来表示。
令 F ( x ) = f ( x ) N F(x)=f(x)^N F(x)=f(x)N,那么结果就是 ∑ i = 0 k [ x i ] F ( x ) \sum_{i=0}^k [x^i]F(x) ∑i=0k[xi]F(x)。
令 G ( x ) = F ( x ) ∗ ( 1 + x + x 2 + . . . ) = F ( x ) ∗ 1 1 − x G(x)=F(x)*(1+x+x^2+...)=F(x)*\frac{1}{1-x} G(x)=F(x)∗(1+x+x2+...)=F(x)∗1−x1,则
[ x k ] G ( x ) = ∑ i = 0 k [ x k ] F ( x ) ∗ [ x k − i ] 1 1 − x = ∑ i = 0 k [ x k ] F ( x ) \begin{matrix} [x^k]G(x)&=&\sum_{i=0}^{k}[x^k]F(x)*[x^{k-i}]\frac{1}{1-x} \\ \\ &=&\sum_{i=0}^k[x^k]F(x) \end{matrix} [xk]G(x)==∑i=0k[xk]F(x)∗[xk−i]1−x1∑i=0k[xk]F(x)
又因:
G ( x ) = F ( x ) ∗ 1 1 − x = x N ( 1 − x M ) N ( 1 − x ) − ( N + 1 ) G(x)=F(x)*\frac{1}{1-x}=x^N(1-x^M)^N(1-x)^{-(N+1)} G(x)=F(x)∗1−x1=xN(1−xM)N(1−x)−(N+1)
故: [ x k ] G ( x ) = [ x k − N ] ( 1 − x M ) N ( 1 − x ) − ( N + 1 ) [x^k]G(x)=[x^{k-N}](1-x^M)^N(1-x)^{-(N+1)} [xk]G(x)=[xk−N](1−xM)N(1−x)−(N+1)。
其中
( 1 − x M ) N = ∑ i = 0 N ( N i ) ( − x M ) i = ∑ i = 0 N ( − 1 ) i N ! i ! ( N − i ) ! x i × M (1-x^M)^N=\sum_{i=0}^N\binom{N}{i}(-x^M)^i=\sum_{i=0}^N(-1)^i\frac{N!}{i!(N-i)!}x^{i\times M} (1−xM)N=i=0∑N(iN)(−xM)i=i=0∑N(−1)ii!(N−i)!N!xi×M
令 h ( x ) = ( 1 − x ) − ( N + 1 ) h(x)=(1-x)^{-(N+1)} h(x)=(1−x)−(N+1),则:
h ( x ) = ( 1 − x ) − N − 1 h ′ ( x ) = ( − N − 1 ) ( − 1 ) ( 1 − x ) − N − 2 = ( N + 1 ) ( 1 − x ) − N − 2 h ′ ′ ( x ) = ( − N − 1 ) ( − N − 2 ) ( − 1 ) 2 ( 1 − x ) − N − 3 = ( N + 1 ) ( N + 2 ) ( 1 − x ) − N − 3 ⋯ h ( i ) ( x ) = ( N + 1 ) ( N + 2 ) ⋯ ( N + i ) ( 1 − x ) − N − 3 = ( N + i ) ! N ! ( 1 − x ) − N − 3 \begin{matrix} h(x)&=&(1-x)^{-N-1}\\ \\ h'(x)&=&(-N-1)(-1)(1-x)^{-N-2}&=&(N+1)(1-x)^{-N-2} \\ \\ h''(x)&=&(-N-1)(-N-2)(-1)^2(1-x)^{-N-3}&=&(N+1)(N+2)(1-x)^{-N-3} \\ \\ \cdots \\ \\ h^{(i)}(x)&=&(N+1)(N+2)\cdots (N+i)(1-x)^{-N-3} &=& \frac{(N+i)!}{N!} (1-x)^{-N-3} \\ \\ \end{matrix} h(x)h′(x)h′′(x)⋯h(i)(x)====(1−x)−N−1(−N−1)(−1)(1−x)−N−2(−N−1)(−N−2)(−1)2(1−x)−N−3(N+1)(N+2)⋯(N+i)(1−x)−N−3===(N+1)(1−x)−N−2(N+1)(N+2)(1−x)−N−3N!(N+i)!(1−x)−N−3
由泰勒公式,得:
h ( x ) = h ( 0 ) + h ′ ( 0 ) x 1 ! + h ′ ′ ( 0 ) x 2 2 ! + . . . + h ( n ) ( 0 ) x n n ! + . . . h(x)=h(0)+\frac{h'(0)x}{1!}+\frac{h''(0)x^2}{2!}+...+\frac{h^{(n)}(0)x^n}{n!}+... h(x)=h(0)+1!h′(0)x+2!h′′(0)x2+...+n!h(n)(0)xn+...
[ x i ] h ( x ) = h ( i ) ( 0 ) i ! x i = ( N + i ) ! N ! i ! x i [x^i]h(x)=\frac{h^{(i)}(0)}{i!}x^i=\frac{(N+i)!}{N!i!}x^i [xi]h(x)=i!h(i)(0)xi=N!i!(N+i)!xi
结果为:
[ x k − N ] ( 1 − x M ) N ( 1 − x ) − ( N + 1 ) = ∑ i ≥ 0 ( − 1 ) i N ! i ! ( N − i ) ! × ( N + ( K − N − i × M ) ) ! N ! ( K − N − i × M ) ! = ∑ i ≥ 0 ( − 1 ) i N ! i ! ( N − i ) ! × ( N + ( K − N − i × M ) ) ! N ! ( K − N − i × M ) ! = ∑ i ≥ 0 ( − 1 ) i ( K − i × M ) ! ( K − N − i × M ) ! × i ! ( N − i ) ! \begin{matrix} [x^{k-N}](1-x^M)^N(1-x)^{-(N+1)} &=&\sum_{i\ge0}(-1)^i\frac{N!}{i!(N-i)!}\times \frac{(N+(K-N-i\times M))!}{N!(K-N-i\times M)!} \\ \\ &=&\sum_{i\ge0}(-1)^i\frac{N!}{i!(N-i)!}\times \frac{(N+(K-N-i\times M))!}{N!(K-N-i\times M)!} \\ \\ &=&\sum_{i\ge0}(-1)^i\frac{(K-i\times M)!}{(K-N-i\times M)!\times i!(N-i)!} \\ \\ \end{matrix} [xk−N](1−xM)N(1−x)−(N+1)===∑i≥0(−1)ii!(N−i)!N!×N!(K−N−i×M)!(N+(K−N−i×M))!∑i≥0(−1)ii!(N−i)!N!×N!(K−N−i×M)!(N+(K−N−i×M))!∑i≥0(−1)i(K−N−i×M)!×i!(N−i)!(K−i×M)!
其中 i × M ≤ K − N i\times M\le K-N i×M≤K−N。
AC的代码
#include <bits/stdc++.h>
#define ll long long
using namespace std;
const int mod = 998244353;
const int N = 1e6 + 10;
ll fac[N], n, m, k;
ll power(ll a, ll b) {
ll res = 1;
while (b) {
if (b & 1) res = res * a % mod;
a = a * a % mod;
b >>= 1;
}
return res;
}
ll inv(ll x) {
return power(x, mod - 2); }
void init() {
fac[0] = 1;
for (int i = 1; i <= N - 10; i++) fac[i] = fac[i - 1] * i % mod;
}
int main() {
init();
cin >> n >> m >> k;
ll res = 0;
for (int i = 0;; i++) {
if (i * m > k - n) break;
ll tmp = fac[k - i * m] * inv(fac[i]) % mod * inv(fac[n - i]) % mod *
inv(fac[k - n - i * m]) % mod;
res = ((res + (i % 2 ? -1 : 1) * tmp) % mod + mod) % mod;
}
cout << res;
return 0;
}
版权声明
本文为[MoYan1082]所创,转载请带上原文链接,感谢
https://blog.csdn.net/qq_45874328/article/details/124358826
边栏推荐
- Usereducer basic usage
- Express ② (routing)
- The difference between is and as in Oracle stored procedure
- 第一章 电商秒杀商品回顾
- leetcode--357. 统计各位数字都不同的数字个数
- Lenovo Saver y9000x 2020
- Express中间件③(自定义中间件)
- Generate 32-bit UUID in Oracle
- Reading notes: meta matrix factorization for federated rating predictions
- RAC environment alert log error drop transient type: systp2jw0acnaurdgu1sbqmbryw = = troubleshooting
猜你喜欢

Special window function rank, deny_ rank, row_ number

Oracle job scheduled task usage details

【项目】小帽外卖(八)

聯想拯救者Y9000X 2020

Dolphin scheduler scheduling spark task stepping record

Zero copy technology

大专的我,闭关苦学 56 天,含泪拿下阿里 offer,五轮面试,六个小时灵魂拷问
![Three characteristics of volatile keyword [data visibility, prohibition of instruction rearrangement and no guarantee of operation atomicity]](/img/ec/b1e99e0f6e7d1ef1ce70eb92ba52c6.png)
Three characteristics of volatile keyword [data visibility, prohibition of instruction rearrangement and no guarantee of operation atomicity]

Express中间件③(自定义中间件)

Express ② (routage)
随机推荐
Database transactions
Detailed explanation of redis (Basic + data type + transaction + persistence + publish and subscribe + master-slave replication + sentinel + cache penetration, breakdown and avalanche)
Reading notes: meta matrix factorization for federated rating predictions
Leetcode? The first common node of two linked lists
Parameter comparison of several e-book readers
leetcode--380.O(1) 时间插入、删除和获取随机元素
OSS cloud storage management practice (polite experience)
函数只执行第一次的执行一次 once函数
Utilisation de GDB
Question bank and answer analysis of the 2022 simulated examination of the latest eight members of Jiangxi construction (quality control)
19c environment ora-01035 login error handling
Set Jianyun x Feishu Shennuo to help the enterprise operation Department realize office automation
大专的我,闭关苦学 56 天,含泪拿下阿里 offer,五轮面试,六个小时灵魂拷问
【vmware】vmware tools 地址
MySQL [acid + isolation level + redo log + undo log]
19c RAC steps for modifying VIP and scanip - same network segment
Antd design form verification
leetcode--977. Squares of a Sorted Array
Example of specific method for TIA to trigger interrupt ob40 based on high-speed counter to realize fixed-point machining action
SQL learning window function