当前位置:网站首页>空间金字塔池化 -Spatial Pyramid Pooling(含源码)
空间金字塔池化 -Spatial Pyramid Pooling(含源码)
2022-08-11 05:35:00 【KPer_Yang】
目录
1、Spatial Pyramid Pooling解决的问题
3、Spatial Pyramid Pooling的代码实现
参考:
《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》
1、Spatial Pyramid Pooling解决的问题
空间金字塔池化主要用来解决输入图片的分辨率不一致的问题。之前解决图片分辨率不一致使用的是图片缩放或者裁剪,这样容易导致图片信息丢失。两种解决图片分辨率不一致问题的方法的区别如图1.1所示:
图1.1 裁剪、缩放和Spatial Pyramid Pooling的区别
2、Spatial Pyramid Pooling实现原理
如图2.1所示,SPP-Net的实现是由多种不同大小的池化层对特征图进行池化,然后进行向量展平和拼接。文中使用的是16*16、4*4、1*1的池化层,在具体应用到自己的任务中时,可以根据特征图的大小等因素进行更改。同时,当特征图不是长宽相等,需要进行padding操作,并且16*16、4*4都是按照划分网格的方式进行池化,跟普通的池化层的操作有区别。
图2.1 Spatial Pyramid Pooling实现原理图示
3、Spatial Pyramid Pooling的代码实现
import math
def spatial_pyramid_pool(self,previous_conv, num_sample, previous_conv_size, out_pool_size):
'''
previous_conv: a tensor vector of previous convolution layer
num_sample: an int number of image in the batch
previous_conv_size: an int vector [height, width] of the matrix features size of previous convolution layer
out_pool_size: a int vector of expected output size of max pooling layer
returns: a tensor vector with shape [1 x n] is the concentration of multi-level pooling
'''
# print(previous_conv.size())
for i in range(len(out_pool_size)):
# print(previous_conv_size)
h_wid = int(math.ceil(previous_conv_size[0] / out_pool_size[i]))
w_wid = int(math.ceil(previous_conv_size[1] / out_pool_size[i]))
h_pad = (h_wid*out_pool_size[i] - previous_conv_size[0] + 1)/2
w_pad = (w_wid*out_pool_size[i] - previous_conv_size[1] + 1)/2
maxpool = nn.MaxPool2d((h_wid, w_wid), stride=(h_wid, w_wid), padding=(h_pad, w_pad))
x = maxpool(previous_conv)
if(i == 0):
spp = x.view(num_sample,-1)
# print("spp size:",spp.size())
else:
# print("size:",spp.size())
spp = torch.cat((spp,x.view(num_sample,-1)), 1)
return
边栏推荐
- numpy和tensor增加或删除一个维度
- SECURITY DAY01 (Monitoring Overview, Zabbix Basics, Zabbix Monitoring Services)
- ETCD cluster fault emergency recovery - local data is available
- HCIP WPN实验
- China Mobile Communications Group Co., Ltd.: Business Power of Attorney
- OA项目之我的审批(查询&会议签字)
- ETCD Single-Node Fault Emergency Recovery
- 升级到Window11体验
- HCIP MPLS/BGP Comprehensive Experiment
- Concurrent programming in eight-part essay
猜你喜欢
随机推荐
OA项目之我的审批(查询&会议签字)
图文带你理解什么是Few-shot Learning
Arcgis小工具_实现重叠分析
ansible batch install zabbix-agent
AUTOMATION DAY06 (Ansible Advanced, Ansible Role)
arcgis填坑_3
HCIP OSPF动态路由协议
iptables nat
kill 命令
Eight-legged text of mysql
Basic use of Slurm
iptables入门
deepin v20.6+cuda+cudnn+anaconda(miniconda)
HCIA实验
HCIP 重发布/路由策略实验
HCIP MPLS/BGP综合实验
HCIP Republish/Routing Policy Experiment
LabelEncoder和LabelBinarizer的区别
numpy和tensor增加或删除一个维度
Conference OA Project My Conference