当前位置:网站首页>空间金字塔池化 -Spatial Pyramid Pooling(含源码)
空间金字塔池化 -Spatial Pyramid Pooling(含源码)
2022-08-11 05:35:00 【KPer_Yang】
目录
1、Spatial Pyramid Pooling解决的问题
3、Spatial Pyramid Pooling的代码实现
参考:
《Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition》
1、Spatial Pyramid Pooling解决的问题
空间金字塔池化主要用来解决输入图片的分辨率不一致的问题。之前解决图片分辨率不一致使用的是图片缩放或者裁剪,这样容易导致图片信息丢失。两种解决图片分辨率不一致问题的方法的区别如图1.1所示:

图1.1 裁剪、缩放和Spatial Pyramid Pooling的区别
2、Spatial Pyramid Pooling实现原理
如图2.1所示,SPP-Net的实现是由多种不同大小的池化层对特征图进行池化,然后进行向量展平和拼接。文中使用的是16*16、4*4、1*1的池化层,在具体应用到自己的任务中时,可以根据特征图的大小等因素进行更改。同时,当特征图不是长宽相等,需要进行padding操作,并且16*16、4*4都是按照划分网格的方式进行池化,跟普通的池化层的操作有区别。

图2.1 Spatial Pyramid Pooling实现原理图示
3、Spatial Pyramid Pooling的代码实现
import math
def spatial_pyramid_pool(self,previous_conv, num_sample, previous_conv_size, out_pool_size):
'''
previous_conv: a tensor vector of previous convolution layer
num_sample: an int number of image in the batch
previous_conv_size: an int vector [height, width] of the matrix features size of previous convolution layer
out_pool_size: a int vector of expected output size of max pooling layer
returns: a tensor vector with shape [1 x n] is the concentration of multi-level pooling
'''
# print(previous_conv.size())
for i in range(len(out_pool_size)):
# print(previous_conv_size)
h_wid = int(math.ceil(previous_conv_size[0] / out_pool_size[i]))
w_wid = int(math.ceil(previous_conv_size[1] / out_pool_size[i]))
h_pad = (h_wid*out_pool_size[i] - previous_conv_size[0] + 1)/2
w_pad = (w_wid*out_pool_size[i] - previous_conv_size[1] + 1)/2
maxpool = nn.MaxPool2d((h_wid, w_wid), stride=(h_wid, w_wid), padding=(h_pad, w_pad))
x = maxpool(previous_conv)
if(i == 0):
spp = x.view(num_sample,-1)
# print("spp size:",spp.size())
else:
# print("size:",spp.size())
spp = torch.cat((spp,x.view(num_sample,-1)), 1)
return 边栏推荐
- CLUSTER DAY01 (Introduction to cluster and LVS, LVS-NAT cluster, LVS-DR cluster)
- Threatless Technology-TVD Daily Vulnerability Intelligence-2022-7-18
- Numpy_备注
- uboot code analysis 1: find the main line according to the purpose
- 核方法 Kernel method
- 使用路由器DDNS功能+动态公网IP实现外网访问(花生壳)
- Local yum source build
- iptables入门
- [损失函数]——均方差
- torch.cat()使用方法
猜你喜欢

CLUSTER DAY02( Keepalived热备 、 Keepalived+LVS 、 HAProxy服务器 )

HCIP Republish/Routing Policy Experiment

MySQL导入导出&视图&索引&执行计划

【LeetCode】306.累加数(思路+题解)

MoreFileRename batch file renaming tool

My approval of OA project (inquiry & meeting signature)

Memory debugging tools Electric Fence

图的拉普拉斯矩阵

使用路由器DDNS功能+动态公网IP实现外网访问(花生壳)

详解BLEU的原理和计算
随机推荐
Numpy_备注
Threatless Technology-TVD Daily Vulnerability Intelligence-2022-7-18
China Mobile Communications Group Co., Ltd.: Business Power of Attorney
ansible batch install zabbix-agent
SECURITY DAY04 (Prometheus server, Prometheus monitored terminal, Grafana, monitoring database)
grep、sed、awk
配置dns服务
FusionCompute8.0.0实验(0)CNA及VRM安装(2280v2)
MySQl进阶之索引结构
AUTOMATION DAY06( Ansible进阶 、 Ansible Role)
一个小时快速熟悉MySQL基本用法
HCIP MGRE\OSPF Comprehensive Experiment
ETCD cluster fault emergency recovery - to recover from the snapshot
MySQL之CRUD
How Xshell connects to a virtual machine
OA项目之项目简介&会议发布
OA项目之我的会议(会议排座&送审)
什么是Inductive learning和Transductive learning
Conference OA Project My Conference
利用opencv读取图片,重命名。