当前位置:网站首页>Extended Chinese Remainder Theorem
Extended Chinese Remainder Theorem
2022-08-10 22:04:00 【aWty_】
exCRT
CRT
关于 C R T CRT CRT,The main idea is this,for a system of equations:
{ x ≡ a 1 ( m o d m 1 ) x ≡ a 1 ( m o d m 2 ) ⋮ x ≡ a n ( m o d m n ) \begin{cases} x \equiv a_1 \pmod {m_1} \\ x \equiv a_1 \pmod {m_2} \\ \vdots \\ x \equiv a_n \pmod {m_n} \end{cases} ⎩⎨⎧x≡a1(modm1)x≡a1(modm2)⋮x≡an(modmn)
Let's say we make:
m = ∏ i = 1 n m i , M i = m m i m = \prod_{i = 1}^n m_i, M_i = \frac m {m_i} m=i=1∏nmi,Mi=mim
然后求出 M i M_i Mi 在模 m i m_i mi 意义下的乘法逆元 t i t_i ti,So we got the answer:
a n s = ∑ i = 1 n a i M i t i ans = \sum_{i = 1}^n a_i M_i t_i ans=i=1∑naiMiti
in the calculation step here,Obviously, when calculating the inverse element, it requires gcd ( M i , m i ) = 1 \gcd(M_i, m_i) = 1 gcd(Mi,mi)=1,then the requirement { m i } \{ m_i \} { mi} l两两互质.
exCRT
总体思路
Extending the Chinese remainder theorem is to solve m i m_i mi Methods of Solving Equations When Pairs Are Not Coprime.
But we can find out after a little thought,要想在 C R T CRT CRT On the basis of small changes to achieve e x C R T exCRT exCRT impossible,因为如果 gcd ( M i , m i ) ≠ 1 \gcd(M_i, m_i) \neq 1 gcd(Mi,mi)=1 If so, then the inverse element does not even exist.,So we need to jump out C R T CRT CRT framework to think about how to scale.
We consider combining the two equations,if it can be merged quickly,So we only need to continue to be merged to directly solve the rest,The only one,简单的,显然的,The linear congruence equation will solve the problem.
合并
Consider the merger of two equations:
{ x ≡ a 1 ( m o d m 1 ) x ≡ a 2 ( m o d m 2 ) \begin{cases} x \equiv a_1 \pmod {m_1} \\ x \equiv a_2 \pmod {m_2} \end{cases} { x≡a1(modm1)x≡a2(modm2)
So we can get according to the nature of the congruence:
x = k 1 m 1 + a 1 = k 2 m 2 + a 2 x = k_1m_1 + a_1 = k_2 m_2 + a_2 x=k1m1+a1=k2m2+a2
移一下项:
k 1 m 1 − k 2 m 2 = a 2 − a 1 k_1m_1 - k_2m_2 = a_2 - a_1 k1m1−k2m2=a2−a1
The form of this formula may not be so intuitive,所以我们令 a = m 1 , b = m 2 , c = a 2 − a 1 , x = k 1 , y = − k 2 a = m_1, b = m_2, c = a_2 - a_1, x = k_1, y = -k_2 a=m1,b=m2,c=a2−a1,x=k1,y=−k2,Did this formula suddenly become like this?:
a x + b y = c ax + by = c ax+by=c
This is a classical indefinite equation solving problem.,Then according to Pei Shu's theorem,我们就能知道:
- 如果 gcd ( m 1 , m 2 ) ∣ ( r 2 − r 1 ) \gcd(m_1, m_2) \mid (r_2 - r_1) gcd(m1,m2)∣(r2−r1),Then the equation can be directly used e x g c d exgcd exgcd find a set of special solutions for her
- 否则,方程无解
那么我们求出 x = k 1 m 1 + a 1 x = k_1m_1 + a_1 x=k1m1+a1 之后就得到了一个 x x x The special solution at the same time satisfy the two equations.We give this special solution a new variable name X X X.
So we can happy new equations:
x ≡ X ( m o d l c m ( m 1 , m 2 ) ) x \equiv X \pmod {lcm(m_1, m_2)} x≡X(modlcm(m1,m2))
This construction should be very obvious,因为 x x x 与 X X X 模 m 1 m_1 m1 Congruence and x x x 与 X X X 模 m 2 m_2 m2 同余,那么 x x x 与 X X X 模 l c m ( m 1 , m 2 ) lcm(m_1, m_2) lcm(m1,m2) 同余.
算法流程总结
- Take two out of all equations
- 合并(If you can't merge output without a solution)
- There is only one equation left, directly solve the only one equation to get the answer
完结撒花!!!
代码
#include<bits/stdc++.h>
using namespace std;
#define int __int128
#define in read()
#define MAXN 100100
inline int read(){
int x = 0; char c = getchar();
while(c < '0' or c > '9') c = getchar();
while('0' <= c and c <= '9'){
x = x * 10 + c - '0'; c = getchar();
}
return x;
}
void write(int x){
if(x < 0) putchar('-'), x = -x;
if(x > 9) write(x / 10);
putchar(x % 10 + '0');
}
int n = 0;
int a[MAXN] = {
0 };
int m[MAXN] = {
0 };
int k1 = 0, k2 = 0;
int exgcd(int a, int b, int &x, int &y){
if(!b) {
x = 1, y = 0; return a; }
int d = exgcd(b, a % b, x, y);
int z = x; x = y, y = z - y * (a / b);
return d;
}
signed main(){
n = in; int ans = 0, lcm = 0;
for(int i = 1; i <= n; i++) m[i] = in, a[i] = in;
for(int i = 1; i < n; i++){
k1 = 0, k2 = 0;
int d = exgcd(m[i], m[i + 1], k1, k2);
if((a[i + 1] - a[i]) % d != 0) {
puts("-1"); return 0; }
lcm = m[i] / d * m[i + 1];
a[i + 1] = k1 * (a[i + 1] - a[i]) / d * m[i] + a[i];
a[i + 1] = (a[i + 1] % lcm + lcm) % lcm; m[i + 1] = lcm;
}
int y = 0;
exgcd(1, m[n], ans, y);
write((ans * a[n] + m[n]) % m[n]);
return 0;
}
边栏推荐
- Redis Performance Impact - Asynchronous Mechanisms and Response Latency
- RTL8721DM 双频WIFI + 蓝牙5.0 物联网(IoT)应用
- 函数:函数删除操作语法&使用例——《mysql 从入门到内卷再到入土》
- Black cats take you learn Makefile article 13: a Makefile collection compile problem
- 基于Pix4Dmapper的运动结构恢复法无人机影像三维模型重建
- camera preview process --- from HAL to OEM
- 使用 Cloudreve 搭建私有云盘
- How to secure users in LDAP directory service?
- 【PCBA solution】Electronic grip strength tester solution she'ji
- Service - DNS forward and reverse domain name resolution service
猜你喜欢

Regular expression of shell programming and text processor

shell (text printing tool awk)

服务——DHCP原理与配置

Use Cloudreve to build a private cloud disk

shell(文本打印工具awk)

Shell编程之条件语句(二)

一篇文章教你Pytest快速入门和基础讲解,一定要看

shell编程之正则表达式与文本处理器

Live Classroom System 08 Supplement - Tencent Cloud Object Storage and Course Classification Management

Huawei router clock near the drainage experiment (using stream strategy)
随机推荐
《mysql 从入门到内卷再到入土》——Mysql基础 学习笔记目录
Alibaba and Ant Group launched OceanBase 4.0, a distributed database, with single-machine deployment performance exceeding MySQL
LeetCode-36-二叉搜索树与双向链表
PROCEDURE :存储过程结构——《mysql 从入门到内卷再到入土》
MATLAB神经网络拟合工具箱Neural Net Fitting使用方法
ENVI自动生成地面控制点实现栅格影像的自动地理配准
Web Reverse Lilac Garden
ENVI感兴趣区ROI文件由XML格式转为ROI格式
接口测试的概念、目的、流程、测试方法有哪些?
PPT的两个实用技巧
力扣215题,数组中的第K个最大元素
The use of TortoiseSVN little turtle
ENVI最小距离、最大似然、支持向量机遥感影像分类
服务——DNS正向反向域名解析服务
In 2021 China industrial Internet security competition (competition) in fujian province and the first industry of fujian province Internet innovation competition
ArcPy读取Excel时序数据、批量反距离加权IDW插值与掩膜
Using SylixOS virtual serial port, serial port free implementation system
元宇宙社交应用,靠什么吸引用户「为爱发电」?
财务年报怎样翻译,为什么要选择专业翻译公司?
HighTec shortcut keys (Keys) setting location