当前位置:网站首页>Pytoch model saving and loading (example)
Pytoch model saving and loading (example)
2022-04-23 07:21:00 【sunshinecxm_ BJTU】
0. Why save and load models
After training the model with data, an ideal model is obtained , But in practical application, it is impossible to train first and then use , So you have to save the trained model first , Then load it when you need it and use it directly . The essence of a model is a pile of parameters stored in some structure , So there are two ways to save , One way is to save the whole model directly , Then directly load the whole model , But this will consume more memory ; The other is to save only the parameters of the model , When used later, create a new model with the same structure , Then import the saved parameters into the new model .
1. Implementation methods of two cases
(1) Save only the model parameter dictionary ( recommend )
# preservation
torch.save(the_model.state_dict(), PATH)
# Read
the_model = TheModelClass(*args, **kwargs)
the_model.load_state_dict(torch.load(PATH))
(2) Save the entire model
# preservation
torch.save(the_model, PATH)
# Read
the_model = torch.load(PATH)
3. Save only model parameters ( Example )
pytorch Will put the parameters of the model in a dictionary , And all we have to do is save this dictionary , Then call .
For example, design a single layer LSTM Network of , And then training , After training, save the parameter Dictionary of the model , Save as... Under the same folder rnn.pt file :
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, 1)
def forward(self, x):
# Set initial states
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
# 2 for bidirection
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
# Forward propagate LSTM
out, _ = self.lstm(x, (h0, c0))
# out: tensor of shape (batch_size, seq_length, hidden_size*2)
out = self.fc(out)
return out
rnn = LSTM(input_size=1, hidden_size=10, num_layers=2).to(device)
# optimize all cnn parameters
optimizer = torch.optim.Adam(rnn.parameters(), lr=0.001)
# the target label is not one-hotted
loss_func = nn.MSELoss()
for epoch in range(1000):
output = rnn(train_tensor) # cnn output`
loss = loss_func(output, train_labels_tensor) # cross entropy loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
output_sum = output
# Save the model
torch.save(rnn.state_dict(), 'rnn.pt')
After saving, use the trained model to process the data :
# Test the saved model
m_state_dict = torch.load('rnn.pt')
new_m = LSTM(input_size=1, hidden_size=10, num_layers=2).to(device)
new_m.load_state_dict(m_state_dict)
predict = new_m(test_tensor)
Here's an explanation , When you save the model rnn.state_dict() Express rnn The parameter Dictionary of this model , When testing the saved model, first load the parameter Dictionary m_state_dict = torch.load(‘rnn.pt’);
Then instantiate one LSTM Antithetic image , Here, we need to ensure that the parameters passed in are consistent with the instantiation rnn Is the same as when the object is passed in , That is, the structure is the same new_m = LSTM(input_size=1, hidden_size=10, num_layers=2).to(device);
Here are the parameters loaded before passing in the new model new_m.load_state_dict(m_state_dict);
Finally, we can use this model to process the data predict = new_m(test_tensor)
4. Save the whole model ( Example )
class LSTM(nn.Module):
def __init__(self, input_size, hidden_size, num_layers):
super(LSTM, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.lstm = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, 1)
def forward(self, x):
# Set initial states
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device) # 2 for bidirection
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
# Forward propagate LSTM
out, _ = self.lstm(x, (h0, c0)) # out: tensor of shape (batch_size, seq_length, hidden_size*2)
# print("output_in=", out.shape)
# print("fc_in_shape=", out[:, -1, :].shape)
# Decode the hidden state of the last time step
# out = torch.cat((out[:, 0, :], out[-1, :, :]), axis=0)
# out = self.fc(out[:, -1, :]) # Take the last column as out
out = self.fc(out)
return out
rnn = LSTM(input_size=1, hidden_size=10, num_layers=2).to(device)
print(rnn)
optimizer = torch.optim.Adam(rnn.parameters(), lr=0.001) # optimize all cnn parameters
loss_func = nn.MSELoss() # the target label is not one-hotted
for epoch in range(1000):
output = rnn(train_tensor) # cnn output`
loss = loss_func(output, train_labels_tensor) # cross entropy loss
optimizer.zero_grad() # clear gradients for this training step
loss.backward() # backpropagation, compute gradients
optimizer.step() # apply gradients
output_sum = output
# Save the model
torch.save(rnn, 'rnn1.pt')
After saving, use the trained model to process the data :
new_m = torch.load('rnn1.pt')
predict = new_m(test_tensor)
版权声明
本文为[sunshinecxm_ BJTU]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/04/202204230610529717.html
边栏推荐
- Gobang games
- MySQL5. 7 insert Chinese data and report an error: ` incorrect string value: '\ xb8 \ XDF \ AE \ xf9 \ X80 at row 1`
- 【指标】Precision、Recall
- 树莓派:双色LED灯实验
- Machine learning notes 1: learning ideas
- 【动态规划】不同路径2
- 【2021年新书推荐】Practical Node-RED Programming
- 【2021年新书推荐】Enterprise Application Development with C# 9 and .NET 5
- 机器学习 三: 基于逻辑回归的分类预测
- ThreadLocal, just look at me!
猜你喜欢
树莓派:双色LED灯实验
![[2021 book recommendation] kubernetes in production best practices](/img/78/2b5bf03adad5da9a109ea5d4e56b18.png)
[2021 book recommendation] kubernetes in production best practices

C language, a number guessing game

【点云系列】点云隐式表达相关论文概要

Machine learning III: classification prediction based on logistic regression

【2021年新书推荐】Learn WinUI 3.0

【2021年新书推荐】Kubernetes in Production Best Practices

1.1 PyTorch和神经网络

Component learning (2) arouter principle learning

机器学习 三: 基于逻辑回归的分类预测
随机推荐
【2021年新书推荐】Enterprise Application Development with C# 9 and .NET 5
Chapter 1 numpy Foundation
Pymysql connection database
Component based learning (3) path and group annotations in arouter
给女朋友写个微信双开小工具
Visual studio 2019 installation and use
Data class of kotlin journey
PaddleOCR 图片文字提取
[dynamic programming] triangle minimum path sum
Machine learning III: classification prediction based on logistic regression
【动态规划】三角形最小路径和
常用UI控件简写名
机器学习 二:基于鸢尾花(iris)数据集的逻辑回归分类
最简单完整的libwebsockets的例子
Project, how to package
[point cloud series] a rotation invariant framework for deep point cloud analysis
C# EF mysql更新datetime字段报错Modifying a column with the ‘Identity‘ pattern is not supported
Fill the network gap
Gephi教程【1】安装
【点云系列】Fully-Convolutional geometric features