当前位置:网站首页>点云数据集常用处理
点云数据集常用处理
2022-04-23 19:13:00 【给算法爸爸上香】
数据集增强
仿射变换
平移变换
import numpy as np
import random
#文件名
old_file=r"rabbit.txt"
new_file=r"rabbit_change.txt"
#平移参数
x_offset=random.uniform(-10, 10)
y_offset=random.uniform(-10, 10)
z_offset=random.uniform(-10, 10)
#变换矩阵
transformation_matrix=np.array([
[1,0,0,x_offset],
[0,1,0,y_offset],
[0,0,1,z_offset],
[0,0,0,1]
])
#加载文件
old_array=np.loadtxt(old_file)
old_xyz=old_array[:,:3]
#补充数据为齐次项
ones_data=np.ones(old_xyz.shape[0])
old_xyz=np.insert(old_xyz,3,values=ones_data,axis=1)
#变换数据
new_xyz = np.dot(transformation_matrix,old_xyz.T)
new_array=np.concatenate((new_xyz.T[:,:3],old_array[:,3:]),axis=1)
np.savetxt(new_file,new_array,fmt='%.06f')
旋转变换
import numpy as np
import random
#文件名
old_file=r"rabbit.txt"
new_file=r"rabbit_change.txt"
#旋转角度
roate_x=random.uniform(-np.pi/10, np.pi/10)
roate_y=random.uniform(-np.pi/10, np.pi/10)
roate_z=random.uniform(-np.pi/10, np.pi/10)
roate_x_matrix=np.array([
[1,0,0,0],
[0,np.cos(roate_x),-np.sin(roate_x),0],
[0,np.sin(roate_x),np.cos(roate_x),0],
[0,0,0,1]
])
roate_y_matrix=np.array([
[np.cos(roate_y),0,np.sin(roate_y),0],
[0,1,0,0],
[-np.sin(roate_y),0,np.cos(roate_y),0],
[0,0,0,1]
])
roate_z_matrix=np.array([
[np.cos(roate_z),-np.sin(roate_z),0,0],
[np.sin(roate_z),np.cos(roate_z),0,0],
[0,0,1,0],
[0,0,0,1]
])
#变换矩阵
transformation_matrix=dot(roate_z_matrix).dot(roate_y_matrix).dot(roate_x_matrix)
#加载文件
old_array=np.loadtxt(old_file)
old_xyz=old_array[:,:3]
#补充数据为齐次项
ones_data=np.ones(old_xyz.shape[0])
old_xyz=np.insert(old_xyz,3,values=ones_data,axis=1)
#变换数据
new_xyz = np.dot(transformation_matrix,old_xyz.T)
new_array=np.concatenate((new_xyz.T[:,:3],old_array[:,3:]),axis=1)
np.savetxt(new_file,new_array,fmt='%.06f')
尺度变换
import numpy as np
import random
#文件名
old_file=r"rabbit.txt"
new_file=r"rabbit_change.txt"
#缩放参数
scale=0.1
#变换矩阵
transformation_matrix=np.array([
[scale,0,0,0],
[0,scale,0,0],
[0,0,scale,0],
[0,0,0,1]
])
#加载文件
old_array=np.loadtxt(old_file)
old_xyz=old_array[:,:3]
#补充数据为齐次项
ones_data=np.ones(old_xyz.shape[0])
old_xyz=np.insert(old_xyz,3,values=ones_data,axis=1)
#变换数据
new_xyz = np.dot(transformation_matrix,old_xyz.T)
new_array=np.concatenate((new_xyz.T[:,:3],old_array[:,3:]),axis=1)
np.savetxt(new_file,new_array,fmt='%.06f')
仿射变换
上面三种变换综合可以写成:
import numpy as np
import random
#文件名
old_file=r"rabbit.txt"
new_file=r"rabbit_change.txt"
#平移参数
x_offset=random.uniform(-10, 10)
y_offset=random.uniform(-10, 10)
z_offset=random.uniform(-10, 10)
#缩放参数
scale=0.1
#旋转角度
roate_x=random.uniform(-np.pi/10, np.pi/10)
roate_y=random.uniform(-np.pi/10, np.pi/10)
roate_z=random.uniform(-np.pi/10, np.pi/10)
roate_x_matrix=np.array([
[1,0,0,0],
[0,np.cos(roate_x),-np.sin(roate_x),0],
[0,np.sin(roate_x),np.cos(roate_x),0],
[0,0,0,1]
])
roate_y_matrix=np.array([
[np.cos(roate_y),0,np.sin(roate_y),0],
[0,1,0,0],
[-np.sin(roate_y),0,np.cos(roate_y),0],
[0,0,0,1]
])
roate_z_matrix=np.array([
[np.cos(roate_z),-np.sin(roate_z),0,0],
[np.sin(roate_z),np.cos(roate_z),0,0],
[0,0,1,0],
[0,0,0,1]
])
#变换矩阵
transformation_matrix=np.array([
[scale,0,0,x_offset],
[0,scale,0,y_offset],
[0,0,scale,z_offset],
[0,0,0,1]
]).dot(roate_z_matrix).dot(roate_y_matrix).dot(roate_x_matrix)
#加载文件
old_array=np.loadtxt(old_file)
old_xyz=old_array[:,:3]
#补充数据为齐次项
ones_data=np.ones(old_xyz.shape[0])
old_xyz=np.insert(old_xyz,3,values=ones_data,axis=1)
#变换数据
new_xyz = np.dot(transformation_matrix,old_xyz.T)
new_array=np.concatenate((new_xyz.T[:,:3],old_array[:,3:]),axis=1)
np.savetxt(new_file,new_array,fmt='%.06f')
仿射变换:
PCL 仿射变换,实现点云平移旋转
添加噪声
import numpy as np
#文件名
old_file=r"rabbit.txt"
new_file=r"rabbit_change.txt"
def add_noise(point, sigma=0.1, clip=0.1):
point = point.reshape(-1,3)
Row, Col = point.shape
noisy_point = np.clip(sigma * np.random.randn(Row, Col), -1*clip, clip)
noisy_point += point
return noisy_point
#加载文件
old_array=np.loadtxt(old_file)
old_xyz=old_array[:,:3]
new_xyz=add_noise(old_xyz)
new_array=np.concatenate((new_xyz,old_array[:,3:]),axis=1)
np.savetxt(new_file,new_array,fmt='%.06f')
下采样
import numpy as np
#文件名
old_file=r"rabbit.txt"
new_file=r"rabbit_change.txt"
#体素滤波
def voxel_filter(point_cloud, leaf_size):
filtered_points = []
# 计算边界点
x_min, y_min, z_min = np.amin(point_cloud, axis=0) #计算x y z 三个维度的最值
x_max, y_max, z_max = np.amax(point_cloud, axis=0)
# 计算 voxel grid维度
Dx = (x_max - x_min) // leaf_size + 1
Dy = (y_max - y_min) // leaf_size + 1
Dz = (z_max - z_min) // leaf_size + 1
# 计算每个点的voxel索引
h = list() # h为保存索引的列表
for i in range(len(point_cloud)):
hx = (point_cloud[i][0] - x_min) // leaf_size
hy = (point_cloud[i][1] - y_min) // leaf_size
hz = (point_cloud[i][2] - z_min) // leaf_size
h.append(hx + hy * Dx + hz * Dx * Dy)
h = np.array(h)
#筛选点
h_indice = np.argsort(h) #返回h里面的元素按从小到大排序的索引
h_sorted = h[h_indice]
begin = 0
for i in range(len(h_sorted) - 1): # 0~9999
if h_sorted[i] != h_sorted[i + 1]:
point_idx = h_indice[begin: i + 1]
filtered_points.append(np.mean(point_cloud[point_idx], axis=0))
begin = i+1
#把点云格式改成array,并对外返回
filtered_points = np.array(filtered_points, dtype=np.float64)
return filtered_points
#加载文件
old_array=np.loadtxt(old_file)
old_xyz=old_array[:,:3]
#保存文件
new_xyz=voxel_filter(old_xyz, 1)
np.savetxt(new_file,new_xyz,fmt='%.06f')
数据归一化
去中心化
centroid = np.mean(pc, axis=0)
pc = pc - centroid
尺度归一化
m = np.max(np.sqrt(np.sum(pc**2, axis=1)))
pc = pc / m
版权声明
本文为[给算法爸爸上香]所创,转载请带上原文链接,感谢
https://blog.csdn.net/taifyang/article/details/124365265
边栏推荐
- One stop service platform for high-level talents and development of comprehensive service platform system for talents
- SQL常用的命令
- Use of fluent custom fonts and pictures
- mysql_ Download and installation of Linux version
- mysql_linux版本的下載及安裝詳解
- Using bafayun to control the computer
- Zlib realizes streaming decompression
- Common SQL commands
- Some ideas about time-consuming needs assessment
- Openlayers 5.0 reload the map when the map container size changes
猜你喜欢

redis优化系列(三)解决主从配置后的常见问题

开关电源设计分享及电源设计技巧图解

微搭低代码零基础入门课(第三课)

浅谈c语言指针的强制转换

Esp01s with Arduino development environment

优先使用组合而不使用继承

FTP, SSH Remote Access and control

Keysight has chosen what equipment to buy for you

Audio signal processing and coding - 2.5.3 the discrete cosine transform

binlog2sql 工具安装使用及问题汇总
随机推荐
SSDB基础3
Codeforces Round #784 (Div. 4)
浅谈c语言指针的强制转换
UML类图几种关系的总结
Raspberry pie uses root operation, and the graphical interface uses its own file manager
Some ideas about time-consuming needs assessment
Solve the problem of invalid listview Click
Why is PostgreSQL about to surpass SQL Server?
【C语言进阶11——字符和字符串函数及其模拟实现(2))】
Sogou cell thesaurus analysis (only extract words and word frequency)
Screen right-click menu in souI
Solutions such as unknown or garbled code or certificate problem prompt in Charles's mobile phone packet capture, actual measurement.
优先使用组合而不使用继承
arcMap 发布切片服务
Sword finger offer II 116 Number of provinces - spatial complexity O (n), time complexity O (n)
JVM的类加载过程
Audio signal processing and coding - 2.5.3 the discrete cosine transform
c1000k TCP 连接上限测试1
[today in history] April 23: the first video uploaded on YouTube; Netease cloud music officially launched; The inventor of digital audio player was born
Disable Ctrl + Alt + Del