当前位置:网站首页>Class loading and classloader understanding
Class loading and classloader understanding
2022-04-23 06:01:00 【hanyc..】


1、 load : Class like class Bytecode file loaded into memory , And convert the static data into the method area ( Special piles ) The runtime data structure of . At this stage , Generate... Representing this class java.lang.Class object .
2、 link : take Java Class to JRE in
- verification : Ensure that the loaded class information complies with JVM standard , There are no security issues ;
- Get ready : Officially a class variable (static) Allocate memory , And set the default initial value of class variables , This memory is allocated in the method area ;
- analysis : take JVM Symbol references in constant pools ( Constant names ) Replace with direct reference ( Address ).
3、 initialization :
- Execute the static( Static code block 、 Static variables ) A combined class constructor ().( The class constructor here is used to construct class information classes , No Constructor for constructing class objects )
- When initializing a class , It is found that his parent class has not been initialized , Then we will initialize its parent class first .
- JVM Ensure that a class () Methods are locked and synchronized correctly in a multithreaded environment .
( Focus on the bold part )
版权声明
本文为[hanyc..]所创,转载请带上原文链接,感谢
https://yzsam.com/2022/04/202204230541159391.html
边栏推荐
- 线代第四章-向量组的线性相关
- Pytoch learning record (x): data preprocessing + batch normalization (BN)
- 异常的处理:抓抛模型
- Understand the current commonly used encryption technology system (symmetric, asymmetric, information abstract, digital signature, digital certificate, public key system)
- PyTorch笔记——实现线性回归完整代码&手动或自动计算梯度代码对比
- String notes
- 基于thymeleaf实现数据库图片展示到浏览器表格
- Complete example demonstration of creating table to page - joint table query
- interviewter:介绍一下MySQL日期函数
- Linear algebra Chapter 1 - determinant
猜你喜欢

Pytoch learning record (x): data preprocessing + batch normalization (BN)

自動控制(韓敏版)

Pytorch notes - observe dataloader & build lenet with torch to process cifar-10 complete code

Pytorch學習記錄(十三):循環神經網絡((Recurrent Neural Network)

Pytorch——数据加载和处理

JDBC连接数据库
![Unsupervised denoising - [tmi2022] ISCL: dependent self cooperative learning for unpaired image denoising](/img/cd/10793445e6867eeee613b6ba4b85cf.png)
Unsupervised denoising - [tmi2022] ISCL: dependent self cooperative learning for unpaired image denoising

Chapter 3 of linear algebra - Elementary Transformation of matrix and system of linear equations

Solve the error: importerror: iprogress not found Please update jupyter and ipywidgets

Gaussian processes of sklearn
随机推荐
Denoising paper - [noise2void, cvpr19] noise2void learning denoising from single noise images
Programming record - picture rotation function SciPy ndimage. Simple use and effect observation of rotate()
PyQy5学习(二):QMainWindow+QWidget+QLabel
RedHat realizes keyword search in specific text types under the directory and keyword search under VIM mode
Comparative study paper - [Moco, cvpr2020] momentum contract for unsupervised visual representation learning
Pytorch introduction notes - use a simple example to observe the output size of each layer of forward propagation
Ptorch learning record (XIII): recurrent neural network
Pytorch學習記錄(十三):循環神經網絡((Recurrent Neural Network)
Kingdee EAS "general ledger" system calls "de posting" button
Pytorch learning record (III): structure of neural network + using sequential and module to define the model
深入源码分析Servlet第一个程序
去噪论文阅读——[RIDNet, ICCV19]Real Image Denoising with Feature Attention
深入理解去噪论文——FFDNet和CBDNet中noise level与噪声方差之间的关系探索
对比学习论文——[MoCo,CVPR2020]Momentum Contrast for Unsupervised Visual Representation Learning
Multithreading and high concurrency (1) -- basic knowledge of threads (implementation, common methods, state)
Protected (members modified by protected are visible to this package and its subclasses)
JDBC连接数据库
Pytorch学习记录(十):数据预处理+Batch Normalization批处理(BN)
Paper on LDCT image reconstruction: edge enhancement based transformer for medical image denoising
线代第四章-向量组的线性相关