Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

Overview

Guided Internet-delivered Cognitive Behavioral Therapy Adherence Forecasting

#Dataset The folder "Dataset" contains the dataset use in this work and made available as a benchmark for future research on adherence forecasting for Internet Delivered Psychological Treatments.

The participants indexes used for hyperparameters selection and architecture building are: [45, 18, 299, 113, 42, 228, 142, 106, 65, 61, 264, 284, 83, 231, 133, 56, 118, 272, 92, 278, 290, 185, 285, 328, 338, 206, 111, 136, 157, 304, 204, 82, 123, 72, 26, 305, 164, 5, 273, 70, 137, 200, 242, 46, 20, 35, 171, 27, 47, 213, 119, 139, 16, 263, 9, 4, 301, 96, 76, 160, 236, 32, 218, 337, 319, 168, 309, 224, 80, 73, 85, 241, 266, 203, 140, 29, 220, 336, 19, 239, 268, 88, 64, 233, 227, 30, 101, 57, 167, 235, 252, 186, 54, 14, 128, 23, 182, 208, 317, 314]

The participants associated with these indexes should not be used when evaluating a classifier.

Required Librairies

For training and evaluation: Pytorch {used version 1.9} (https://pytorch.org/), Pandas {used version 1.3.2} (https://pandas.pydata.org/), Scikit-Learn {used version 0.24.2} (https://scikit-learn.org/stable/), Numpy {used version 1.20.3} (https://numpy.org/), SciPy {used version 1.6.2} (https://scipy.org/)

To generate the plots: Seaborn {used version 0.11.2} (https://seaborn.pydata.org/)

#Project Structure

The folder "Classification" contains both the hyperparameter search (classify_self_attention_variable_length.py) and the training and testing of the best found model (classify_self_attention_variable_length.py)

The folder "AnalysisAndGraph" contains the python script to generate the graphs presented in this work's paper (results_graph_generation.py), based on the results obtained (which are available in the folder "Results").

Finally, the folder "AblationSingleLength" contains the hyperparameter search (hyperparameters_search_single_length.py) and the training and testing (classify_self_attention_single_length.py) of the network when considering only a single sequence length (e.g. learning to predict adherence based on using only 11 days).

Implementation of Rotary Embeddings, from the Roformer paper, in Pytorch

Rotary Embeddings - Pytorch A standalone library for adding rotary embeddings to transformers in Pytorch, following its success as relative positional

Phil Wang 110 Dec 30, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
Code for paper "A Critical Assessment of State-of-the-Art in Entity Alignment" (https://arxiv.org/abs/2010.16314)

A Critical Assessment of State-of-the-Art in Entity Alignment This repository contains the source code for the paper A Critical Assessment of State-of

Max Berrendorf 16 Oct 14, 2022
Official page of Struct-MDC (RA-L'22 with IROS'22 option); Depth completion from Visual-SLAM using point & line features

Struct-MDC (click the above buttons for redirection!) Official page of "Struct-MDC: Mesh-Refined Unsupervised Depth Completion Leveraging Structural R

Urban Robotics Lab. @ KAIST 37 Dec 22, 2022
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
Code in PyTorch for the convex combination linear IAF and the Householder Flow, J.M. Tomczak & M. Welling

VAE with Volume-Preserving Flows This is a PyTorch implementation of two volume-preserving flows as described in the following papers: Tomczak, J. M.,

Jakub Tomczak 87 Dec 26, 2022
Attention over nodes in Graph Neural Networks using PyTorch (NeurIPS 2019)

Intro This repository contains code to generate data and reproduce experiments from our NeurIPS 2019 paper: Boris Knyazev, Graham W. Taylor, Mohamed R

Boris Knyazev 242 Jan 06, 2023
Unsupervised MRI Reconstruction via Zero-Shot Learned Adversarial Transformers

Official TensorFlow implementation of the unsupervised reconstruction model using zero-Shot Learned Adversarial TransformERs (SLATER). (https://arxiv.

ICON Lab 22 Dec 22, 2022
A big endian Gentoo port developed on a Pine64.org RockPro64

Gentoo-aarch64_be A big endian Gentoo port developed on a Pine64.org RockPro64 The endian wars are over... little endian won. As a result, it is incre

Rory Bolt 6 Dec 07, 2022
Like ThreeJS but for Python and based on wgpu

pygfx A render engine, inspired by ThreeJS, but for Python and targeting Vulkan/Metal/DX12 (via wgpu). Introduction This is a Python render engine bui

139 Jan 07, 2023
Bayesian dessert for Lasagne

Gelato Bayesian dessert for Lasagne Recent results in Bayesian statistics for constructing robust neural networks have proved that it is one of the be

Maxim Kochurov 84 May 11, 2020
(JMLR'19) A Python Toolbox for Scalable Outlier Detection (Anomaly Detection)

Python Outlier Detection (PyOD) Deployment & Documentation & Stats Build Status & Coverage & Maintainability & License PyOD is a comprehensive and sca

Yue Zhao 6.6k Jan 03, 2023
PFFDTD is an open-source FDTD simulator for 3D room acoustics

PFFDTD is an open-source FDTD simulator for 3D room acoustics

Brian Hamilton 34 Nov 24, 2022
Code for the paper "VisualBERT: A Simple and Performant Baseline for Vision and Language"

This repository contains code for the following two papers: VisualBERT: A Simple and Performant Baseline for Vision and Language (arxiv) with a short

Natural Language Processing @UCLA 463 Dec 09, 2022
Post-Training Quantization for Vision transformers.

PTQ4ViT Post-Training Quantization Framework for Vision Transformers. We use the twin uniform quantization method to reduce the quantization error on

Zhihang Yuan 61 Dec 28, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
A collection of random and hastily hacked together scripts for investigating EU-DCC

A collection of random and hastily hacked together scripts for investigating EU-DCC

Ryan Barrett 8 Mar 01, 2022
code for "Feature Importance-aware Transferable Adversarial Attacks"

Feature Importance-aware Attack(FIA) This repository contains the code for the paper: Feature Importance-aware Transferable Adversarial Attacks (ICCV

Hengchang Guo 44 Nov 24, 2022
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023
This is the official implementation for "Do Transformers Really Perform Bad for Graph Representation?".

Graphormer By Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng*, Guolin Ke, Di He*, Yanming Shen and Tie-Yan Liu. This repo is the official impl

Microsoft 1.3k Dec 29, 2022