Official implementation for the paper: "Multi-label Classification with Partial Annotations using Class-aware Selective Loss"

Overview

PWC

Multi-label Classification with Partial Annotations using Class-aware Selective Loss


Paper | Pretrained models

Official PyTorch Implementation

Emanuel Ben-Baruch, Tal Ridnik, Itamar Friedman, Avi Ben-Cohen, Nadav Zamir, Asaf Noy, Lihi Zelnik-Manor
DAMO Academy, Alibaba Group

Abstract

Large-scale multi-label classification datasets are commonly, and perhaps inevitably, partially annotated. That is, only a small subset of labels are annotated per sample. Different methods for handling the missing labels induce different properties on the model and impact its accuracy. In this work, we analyze the partial labeling problem, then propose a solution based on two key ideas. First, un-annotated labels should be treated selectively according to two probability quantities: the class distribution in the overall dataset and the specific label likelihood for a given data sample. We propose to estimate the class distribution using a dedicated temporary model, and we show its improved efficiency over a naive estimation computed using the dataset's partial annotations. Second, during the training of the target model, we emphasize the contribution of annotated labels over originally un-annotated labels by using a dedicated asymmetric loss. Experiments conducted on three partially labeled datasets, OpenImages, LVIS, and simulated-COCO, demonstrate the effectiveness of our approach. Specifically, with our novel selective approach, we achieve state-of-the-art results on OpenImages dataset. Code will be made available.

Class-aware Selective Approach

An overview of our approach is summarized in the following figure:

Loss Implementation

Our loss consists of a selective approach for adjusting the training mode for each class individualy and a partial asymmetric loss.

An implementation of the Class-aware Selective Loss (CSL) can be found here.

  • class PartialSelectiveLoss(nn.Module)

Pretrained Models

We provide models pretrained on the OpenImages datasset with different modes and architectures:

Model Architecture Link mAP
Ignore TResNet-M link 85.38
Negative TResNet-M link 85.85
Selective (CSL) TResNet-M link 86.72
Selective (CSL) TResNet-L link 87.34

Inference Code (Demo)

We provide inference code, that demonstrate how to load the model, pre-process an image and do inference. Example run of OpenImages model (after downloading the relevant model):

python infer.py  \
--dataset_type=OpenImages \
--model_name=tresnet_m \
--model_path=./models_local/mtresnet_opim_86.72.pth \
--pic_path=./pics/10162266293_c7634cbda9_o.jpg \
--input_size=448

Result Examples

Training Code

Training code is provided in (train.py). Also, code for simulating partial annotation for the MS-COCO dataset is available (here). In particular, two "partial" simulation schemes are implemented: fix-per-class(FPC) and random-per-sample (RPS).

  • FPC: For each class, we randomly sample a fixed number of positive annotations and the same number of negative annotations. The rest of the annotations are dropped.
  • RPA: We omit each annotation with probability p.

Pretrained weights using the ImageNet-21k dataset can be found here: link
Pretrained weights using the ImageNet-1k dataset can be found here: link

Example of training with RPS simulation:

--data=/mnt/datasets/COCO/COCO_2014
--model-path=models/pretrain/mtresnet_21k
--gamma_pos=0
--gamma_neg=4
--gamma_unann=4
--simulate_partial_type=rps
--simulate_partial_param=0.5
--partial_loss_mode=selective
--likelihood_topk=5
--prior_threshold=0.5
--prior_path=./outputs/priors/prior_fpc_1000.csv

Example of training with FPC simulation:

--data=/mnt/datasets/COCO/COCO_2014
--model-path=models/pretrain/mtresnet_21k
--gamma_pos=0
--gamma_neg=4
--gamma_unann=4
--simulate_partial_type=fpc
--simulate_partial_param=1000
--partial_loss_mode=selective
--likelihood_topk=5
--prior_threshold=0.5
--prior_path=./outputs/priors/prior_fpc_1000.csv

Typical Training Results

FPC (1,000) simulation scheme:

Model mAP
Ignore, CE 76.46
Negative, CE 81.24
Negative, ASL (4,1) 81.64
CSL - Selective, P-ASL(4,3,1) 83.44

RPS (0.5) simulation scheme:

Model mAP
Ignore, CE 84.90
Negative, CE 81.21
Negative, ASL (4,1) 81.91
CSL- Selective, P-ASL(4,1,1) 85.21

Estimating the Class Distribution

The training code contains also the procedure for estimting the class distribution from the data. Our approach enables to rank the classes based on training a temporary model usinig the Ignore mode. link

Top 10 classes:

Method Top 10 ranked classes
Original 'person', 'chair', 'car', 'dining table', 'cup', 'bottle', 'bowl', 'handbag', 'truck', 'backpack'
Estiimate (Ignore mode) 'person', 'chair', 'handbag', 'cup', 'bench', 'bottle', 'backpack', 'car', 'cell phone', 'potted plant'
Estimate (Negative mode) 'kite' 'truck' 'carrot' 'baseball glove' 'tennis racket' 'remote' 'cat' 'tie' 'horse' 'boat'

Citation

@misc{benbaruch2021multilabel,
      title={Multi-label Classification with Partial Annotations using Class-aware Selective Loss}, 
      author={Emanuel Ben-Baruch and Tal Ridnik and Itamar Friedman and Avi Ben-Cohen and Nadav Zamir and Asaf Noy and Lihi Zelnik-Manor},
      year={2021},
      eprint={2110.10955},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgements

Several images from OpenImages dataset are used in this project. ֿ
Some components of this code implementation are adapted from the repository https://github.com/Alibaba-MIIL/ASL.

GrailQA: Strongly Generalizable Question Answering

GrailQA is a new large-scale, high-quality KBQA dataset with 64,331 questions annotated with both answers and corresponding logical forms in different syntax (i.e., SPARQL, S-expression, etc.). It ca

OSU DKI Lab 76 Dec 21, 2022
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
Fast and simple implementation of RL algorithms, designed to run fully on GPU.

RSL RL Fast and simple implementation of RL algorithms, designed to run fully on GPU. This code is an evolution of rl-pytorch provided with NVIDIA's I

Robotic Systems Lab - Legged Robotics at ETH Zürich 68 Dec 29, 2022
A script helps the user to update Linux and Mac systems through the terminal

Description This script helps the user to update Linux and Mac systems through the terminal. All the user has to install some requirements and then ru

Roxcoder 2 Jan 23, 2022
Greedy Gaussian Segmentation

GGS Greedy Gaussian Segmentation (GGS) is a Python solver for efficiently segmenting multivariate time series data. For implementation details, please

Stanford University Convex Optimization Group 72 Dec 07, 2022
Adjust Decision Boundary for Class Imbalanced Learning

Adjusting Decision Boundary for Class Imbalanced Learning This repository is the official PyTorch implementation of WVN-RS, introduced in Adjusting De

Peyton Byungju Kim 16 Jan 04, 2023
🔥 TensorFlow Code for technical report: "YOLOv3: An Incremental Improvement"

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ? If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv

3.6k Dec 26, 2022
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022
In this tutorial, you will perform inference across 10 well-known pre-trained object detectors and fine-tune on a custom dataset. Design and train your own object detector.

Object Detection Object detection is a computer vision task for locating instances of predefined objects in images or videos. In this tutorial, you wi

Ibrahim Sobh 62 Dec 25, 2022
Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network

Predicting Auction Sale Price using the kaggle bulldozer auction sales data: Modeling with Ensembles vs Neural Network The performances of tree ensemb

Mustapha Unubi Momoh 2 Sep 13, 2022
OoD Minimum Anomaly Score GAN - Code for the Paper 'OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary'

OMASGAN: Out-of-Distribution Minimum Anomaly Score GAN for Sample Generation on the Boundary Out-of-Distribution Minimum Anomaly Score GAN (OMASGAN) C

- 8 Sep 27, 2022
AAAI-22 paper: SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning

SimSR Code and dataset for the paper SimSR: Simple Distance-based State Representationfor Deep Reinforcement Learning (AAAI-22). Requirements We assum

7 Dec 19, 2022
4th place solution to datafactory challenge by Intermarché.

Solution to Datafactory challenge by Intermarché. 4th place solution to datafactory challenge by Intermarché. The objective of the challenge is to pre

Raphael Sourty 11 Mar 19, 2022
MegEngine implementation of YOLOX

Introduction YOLOX is an anchor-free version of YOLO, with a simpler design but better performance! It aims to bridge the gap between research and ind

旷视天元 MegEngine 77 Nov 22, 2022
implement of SwiftNet:Real-time Video Object Segmentation

SwiftNet The official PyTorch implementation of SwiftNet:Real-time Video Object Segmentation, which has been accepted by CVPR2021. Requirements Python

haochen wang 64 Dec 14, 2022
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
Machine Learning Toolkit for Kubernetes

Kubeflow the cloud-native platform for machine learning operations - pipelines, training and deployment. Documentation Please refer to the official do

Kubeflow 12.1k Jan 03, 2023
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
Towards Representation Learning for Atmospheric Dynamics (AtmoDist)

Towards Representation Learning for Atmospheric Dynamics (AtmoDist) The prediction of future climate scenarios under anthropogenic forcing is critical

Sebastian Hoffmann 4 Dec 15, 2022
Learning hierarchical attention for weakly-supervised chest X-ray abnormality localization and diagnosis

Hierarchical Attention Mining (HAM) for weakly-supervised abnormality localization This is the official PyTorch implementation for the HAM method. Pap

Xi Ouyang 22 Jan 02, 2023