Language-Agnostic Website Embedding and Classification

Overview

Homepage2Vec

Language-Agnostic Website Embedding and Classification based on Curlie labels https://arxiv.org/pdf/2201.03677.pdf


Homepage2Vec is a pre-trained model that supports the classification and embedding of websites starting from their homepage.

Left: Projection in two dimensions with t-SNE of the embedding of 5K random samples of the testing set. Colors represent the 14 classes. Right: The projection with t-SNE of some popular websites shows that embedding vectors effectively capture website topics.

Curated Curlie Dataset

We release the full training dataset obtained from Curlie. The dataset includes the websites (online in April 2021) with the URL recognized as homepage, and it contains the original labels, the labels aligned to English, and the fetched HTML pages.

Get it here: https://doi.org/10.6084/m9.figshare.16621669

Getting started with the library

Installation:

Step 1: install the library with pip.

pip install homepage2vec

Usage:

import logging
from homepage2vec.model import WebsiteClassifier

logging.getLogger().setLevel(logging.DEBUG)

model = WebsiteClassifier()

website = model.fetch_website('epfl.ch')

scores, embeddings = model.predict(website)

print("Classes probabilities:", scores)
print("Embedding:", embeddings)

Result:

Classes probabilities: {'Arts': 0.3674524128437042, 'Business': 0.0720655769109726,
 'Computers': 0.03488553315401077, 'Games': 7.529282356699696e-06, 
 'Health': 0.02021787129342556, 'Home': 0.0005890956381335855, 
 'Kids_and_Teens': 0.3113572597503662, 'News': 0.0079914266243577, 
 'Recreation': 0.00835705827921629, 'Reference': 0.931416392326355, 
 'Science': 0.959597110748291, 'Shopping': 0.0010162043618038297, 
 'Society': 0.23374591767787933, 'Sports': 0.00014659571752417833}
 
Embedding: [-4.596550941467285, 1.0690114498138428, 2.1633379459381104,
 0.1665923148393631, -4.605356216430664, -2.894961357116699, 0.5615459084510803, 
 1.6420538425445557, -1.918184757232666, 1.227172613143921, 0.4358430504798889, 
 ...]

The library automatically downloads the pre-trained models homepage2vec and XLM-R at the first usage.

Using visual features

If you wish to use the prediction using the visual features, Homepage2vec needs to take a screenshot of the website. This means you need a working copy of Selenium and the Chrome browser. Please note that as reported in the reference paper, the performance improvement is limited.

Install the Selenium Chrome web driver, and add the folder to the system $PATH variable. You need a local copy of Chrome browser (See Getting started).

Getting involved

We invite contributions to Homepage2Vec! Please open a pull request if you have any suggestions.

Original publication

Language-Agnostic Website Embedding and Classification

Sylvain Lugeon, Tiziano Piccardi, Robert West

Currently, publicly available models for website classification do not offer an embedding method and have limited support for languages beyond English. We release a dataset with more than 1M websites in 92 languages with relative labels collected from Curlie, the largest multilingual crowdsourced Web directory. The dataset contains 14 website categories aligned across languages. Alongside it, we introduce Homepage2Vec, a machine-learned pre-trained model for classifying and embedding websites based on their homepage in a language-agnostic way. Homepage2Vec, thanks to its feature set (textual content, metadata tags, and visual attributes) and recent progress in natural language representation, is language-independent by design and can generate embeddings representation. We show that Homepage2Vec correctly classifies websites with a macro-averaged F1-score of 0.90, with stable performance across low- as well as high-resource languages. Feature analysis shows that a small subset of efficiently computable features suffices to achieve high performance even with limited computational resources.

https://arxiv.org/pdf/2201.03677.pdf

Dataset License

Creative Commons Attribution 3.0 Unported License - Curlie

Learn more how to contribute: https://curlie.org/docs/en/about.html

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pytorch Lightning 1.4k Jan 01, 2023
Using VapourSynth with super resolution models and speeding them up with TensorRT.

VSGAN-tensorrt-docker Using image super resolution models with vapoursynth and speeding them up with TensorRT. Using NVIDIA/Torch-TensorRT combined wi

111 Jan 05, 2023
Json2Xml tool will help you convert from json COCO format to VOC xml format in Object Detection Problem.

JSON 2 XML All codes assume running from root directory. Please update the sys path at the beginning of the codes before running. Over View Json2Xml t

Nguyễn Trường Lâu 6 Aug 22, 2022
Combinatorial model of ligand-receptor binding

Combinatorial model of ligand-receptor binding The binding of ligands to receptors is the starting point for many import signal pathways within a cell

Mobolaji Williams 0 Jan 09, 2022
This is a collection of all challenges in HKCERT CTF 2021

香港網絡保安新生代奪旗挑戰賽 2021 (HKCERT CTF 2021) This is a collection of all challenges (and writeups) in HKCERT CTF 2021 Challenges ID Chinese name Name Score S

10 Jan 27, 2022
An open-access benchmark and toolbox for electricity price forecasting

epftoolbox The epftoolbox is the first open-access library for driving research in electricity price forecasting. Its main goal is to make available a

97 Dec 05, 2022
Python implementation of Project Fluent

Project Fluent This is a collection of Python packages to use the Fluent localization system. python-fluent consists of these packages: fluent.syntax

Project Fluent 155 Dec 28, 2022
code for our ECCV-2020 paper: Self-supervised Video Representation Learning by Pace Prediction

Video_Pace This repository contains the code for the following paper: Jiangliu Wang, Jianbo Jiao and Yunhui Liu, "Self-Supervised Video Representation

Jiangliu Wang 95 Dec 14, 2022
Malware Bypass Research using Reinforcement Learning

Malware Bypass Research using Reinforcement Learning

Bobby Filar 76 Dec 26, 2022
Code to reproduce the experiments in the paper "Transformer Based Multi-Source Domain Adaptation" (EMNLP 2020)

Transformer Based Multi-Source Domain Adaptation Dustin Wright and Isabelle Augenstein To appear in EMNLP 2020. Read the preprint: https://arxiv.org/a

CopeNLU 36 Dec 05, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation.

ENet This work has been published in arXiv: ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation. Packages: train contains too

e-Lab 344 Nov 21, 2022
[NeurIPS'21 Spotlight] PyTorch code for our paper "Aligned Structured Sparsity Learning for Efficient Image Super-Resolution"

ASSL This repository is for a new network pruning method (Aligned Structured Sparsity Learning, ASSL) for efficient single image super-resolution (SR)

Huan Wang 47 Nov 28, 2022
FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation

FCN_via_Keras FCN FCN (Fully Convolutional Network) is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This

Kento Watanabe 48 Aug 30, 2022
A Simulated Optimal Intrusion Response Game

Optimal Intrusion Response An OpenAI Gym interface to a MDP/Markov Game model for optimal intrusion response of a realistic infrastructure simulated u

Kim Hammar 10 Dec 09, 2022
TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL, and utterance id

TEDSummary is a speech summary corpus. It includes TED talks subtitle (Document), Title-Detail (Summary), speaker name (Meta info), MP4 URL

3 Dec 26, 2022
Waymo motion prediction challenge 2021: 3rd place solution

Waymo motion prediction challenge 2021: 3rd place solution 📜 Technical report 🗨️ Presentation 🎉 Announcement 🛆Motion Prediction Channel Website 🛆

158 Jan 08, 2023
InferPy: Deep Probabilistic Modeling with Tensorflow Made Easy

InferPy: Deep Probabilistic Modeling Made Easy InferPy is a high-level API for probabilistic modeling written in Python and capable of running on top

PGM-Lab 141 Oct 13, 2022
Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Scan-Dataset

Medical-Image-Triage-and-Classification-System-Based-on-COVID-19-CT-and-X-ray-Sc

2 Dec 26, 2021
Intel® Nervana™ reference deep learning framework committed to best performance on all hardware

DISCONTINUATION OF PROJECT. This project will no longer be maintained by Intel. Intel will not provide or guarantee development of or support for this

Nervana 3.9k Dec 20, 2022