Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Overview

Foodi-ML dataset

This is the GitHub repository for the Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset. This dataset contains over 1.5M unique images and over 9.5M store names, product names, descriptions and collection sections gathered from the Glovo application. The data made available corresponds to food, drinks and groceries products from over 37 countries in Europe, the Middle East, Africa and Latin America. The dataset comprehends 33 languages, including 870k samples of languages of countries from Eastern Europe and West Asia such as Ukrainian and Kazakh, which have been so far underrepresented in publicly available visio-linguistic datasets. The dataset also includes widely spoken languages such as Spanish and English.

License

The FooDI-ML dataset is offered under the BY-NC-SA license.

1. Download the dataset

The FooDI-ML dataset is hosted in a S3 bucket in AWS. Therefore AWS CLI is needed to download it. Our dataset is composed of:

  • One DataFrame (glovo-foodi-ml-dataset) stored as a csv file containing all text information + image paths in S3. The size of this CSV file is 540 MB.
  • Set of images listed in the DataFrame. The disk space required to store all images is 316.1 GB.

1.1. Download AWS CLI

If you do not have AWS CLI already installed, please download the latest version of AWS CLI for your operating system.

1.2. Download FooDI-ML

  1. Run the following command to download the DataFrame in ENTER_DESTINATION_PATH directory. We provide an example as if we were going to download the dataset in the directory /mnt/data/foodi-ml/.

    aws s3 cp s3://glovo-products-dataset-d1c9720d/glovo-foodi-ml-dataset.csv ENTER_DESTINATION_PATH --no-sign-request

    Example: aws s3 cp s3://glovo-products-dataset-d1c9720d/glovo-foodi-ml-dataset.csv /mnt/data/foodi-ml/ --no-sign-request

  2. Run the following command to download the images in ENTER_DESTINATION_PATH/dataset directory (please note the appending of /dataset). This command will download the images in ENTER_DESTINATION_PATHdirectory.

    aws s3 cp --recursive s3://glovo-products-dataset-d1c9720d/dataset ENTER_DESTINATION_PATH/dataset --no-sign-request --quiet

    Example: aws s3 cp --recursive s3://glovo-products-dataset-d1c9720d/dataset /mnt/data/foodi-ml/dataset --no-sign-request --quiet

  3. Run the script rename_images.py. This script modifies the DataFrame column to include the paths of the images in the location you specified with ENTER_DESTINATION_PATH/dataset.

    pip install pandas
    python scripts/rename_images.py --output-dir ENTER_DESTINATION_PATH
    

Getting started

Our dataset is managed by the DataFrame glovo-foodi-ml-dataset.csv. This dataset contains the following columns:

  • country_code: This column comprehends 37 unique country codes as explained in our paper. These codes are:

    'ES', 'PL', 'CI', 'PT', 'MA', 'IT', 'AR', 'BG', 'KZ', 'BR', 'ME', 'TR', 'PE', 'SI', 'GE', 'EG', 'RS', 'RO', 'HR', 'UA', 'DO', 'KG', 'CR', 'UY', 'EC', 'HN', 'GH', 'KE', 'GT', 'CL', 'FR', 'BA', 'PA', 'UG', 'MD', 'NG', 'PR'

  • city_code: Name of the city where the store is located.

  • store_name: Name of the store selling that product. If store_name is equal to AS_XYZ, it represents an auxiliary store. This means that while the samples contained are for the most part valid, the store name can't be used in learning tasks

  • product_name: Name of the product. All products have product_name, so this column does not contain any NaN value.

  • collection_section: Name of the section of the product, used for organizing the store menu. Common values are "drinks", "our pizzas", "desserts". All products have collection_section associated to it, so this column does not have any NaN value in it.

  • product_description: A detailed description of the product, describing ingredients and components of it. Not all products of our data have description, so this column contains NaN values that must be removed by the researchers as a preprocessing step.

  • subset: Categorical variable indicating if the sample belongs to the Training, Validation or Test set. The respective values in the DataFrame are ["train", "val", "test"].

  • HIER: Boolean variable indicating if the store name can be used to retrieve product information (indicating if the store_name is not an auxiliary store (with code AS_XYZ)).

  • s3_path: Path of the image of the product in the disk location you chose.

Dataset Statistics

A notebook analyzing several dataset statistics is provided in notebooks/FooDI-ML Dataset Stats Analytics.ipynb.

Benchmark

To run the benchmark included in the original paper one must follow the procedure listed in the following link.

The hyperparameters of the model are included here link

Citation

This paper is under review. In the meanwhile you can cite it in arxiv: https://arxiv.org/abs/2110.02035

External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 Jittor code will come soon

MenghaoGuo 357 Dec 11, 2022
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Learning to Simulate Dynamic Environments with GameGAN (CVPR 2020)

Learning to Simulate Dynamic Environments with GameGAN PyTorch code for GameGAN Learning to Simulate Dynamic Environments with GameGAN Seung Wook Kim,

199 Dec 26, 2022
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
Deeplab-resnet-101 in Pytorch with Jaccard loss

Deeplab-resnet-101 Pytorch with Lovász hinge loss Train deeplab-resnet-101 with binary Jaccard loss surrogate, the Lovász hinge, as described in http:

Maxim Berman 95 Apr 15, 2022
Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection

61 Jan 07, 2023
A free, multiplatform SDK for real-time facial motion capture using blendshapes, and rigid head pose in 3D space from any RGB camera, photo, or video.

mocap4face by Facemoji mocap4face by Facemoji is a free, multiplatform SDK for real-time facial motion capture based on Facial Action Coding System or

Facemoji 591 Dec 27, 2022
OCRA (Object-Centric Recurrent Attention) source code

OCRA (Object-Centric Recurrent Attention) source code Hossein Adeli and Seoyoung Ahn Please cite this article if you find this repository useful: For

Hossein Adeli 2 Jun 18, 2022
StarGAN - Official PyTorch Implementation (CVPR 2018)

StarGAN: Unified Generative Adversarial Networks for Multi-Domain Image-to-Image Translation

Yunjey Choi 5.1k Dec 30, 2022
Implementation of Barlow Twins paper

barlowtwins PyTorch Implementation of Barlow Twins paper: Barlow Twins: Self-Supervised Learning via Redundancy Reduction This is currently a work in

IgorSusmelj 86 Dec 20, 2022
a reimplementation of Holistically-Nested Edge Detection in PyTorch

pytorch-hed This is a personal reimplementation of Holistically-Nested Edge Detection [1] using PyTorch. Should you be making use of this work, please

Simon Niklaus 375 Dec 06, 2022
Differentiable Simulation of Soft Multi-body Systems

Differentiable Simulation of Soft Multi-body Systems Yi-Ling Qiao, Junbang Liang, Vladlen Koltun, Ming C. Lin [Paper] [Code] Updates The C++ backend s

YilingQiao 26 Dec 23, 2022
a reimplementation of LiteFlowNet in PyTorch that matches the official Caffe version

pytorch-liteflownet This is a personal reimplementation of LiteFlowNet [1] using PyTorch. Should you be making use of this work, please cite the paper

Simon Niklaus 365 Dec 31, 2022
CLIPImageClassifier wraps clip image model from transformers

CLIPImageClassifier CLIPImageClassifier wraps clip image model from transformers. CLIPImageClassifier is initialized with the argument classes, these

Jina AI 6 Sep 12, 2022
RGB-stacking 🛑 🟩 🔷 for robotic manipulation

RGB-stacking 🛑 🟩 🔷 for robotic manipulation BLOG | PAPER | VIDEO Beyond Pick-and-Place: Tackling Robotic Stacking of Diverse Shapes, Alex X. Lee*,

DeepMind 95 Dec 23, 2022
Repo for "Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions" https://arxiv.org/abs/2201.12296

Benchmarking Robustness of 3D Point Cloud Recognition against Common Corruptions This repo contains the dataset and code for the paper Benchmarking Ro

Jiachen Sun 168 Dec 29, 2022
an implementation of 3D Ken Burns Effect from a Single Image using PyTorch

3d-ken-burns This is a reference implementation of 3D Ken Burns Effect from a Single Image [1] using PyTorch. Given a single input image, it animates

Simon Niklaus 1.4k Dec 28, 2022
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022